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ERROR ANALYSIS OF A MIXED FINITE ELEMENT METHOD

FOR THE MONGE-AMPÈRE EQUATION
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Abstract. We analyze the convergence of a mixed finite element method for the elliptic Monge-
Ampère equation in dimensions 2 and 3. The unknowns in the formulation, the scalar variable and
a discrete Hessian, are approximated by Lagrange finite element spaces. The method originally
proposed by Lakkis and Pryer can be viewed as the formal limit of a Hermann-Miyoshi mixed
method proposed by Feng and Neilan in the context of the vanishing moment methodology. Error
estimates are derived under the assumption that the continuous problem has a smooth solution.
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1. Introduction

We are interested in the numerical approximation of convex solutions of the
nonlinear elliptic Monge-Ampère equation

detD2u = f inΩ

u = g on ∂Ω.
(1.1)

Here Ω is a convex polygonal domain of Rd and f ∈ C(Ω), g ∈ C(∂Ω) with f ≥ c0 >
0 for a constant c0 > 0. We give an analysis of a mixed finite element approximation
of (1.1) for dimensions d = 2 and d = 3. The unknowns in the formulation are
the scalar variable and a discrete Hessian and both are approximated by Lagrange
finite element spaces of degree k ≥ 1.

The numerical study of Monge-Ampère type equations is a recent active research
area where it appears that techniques to prove convergence to the so-called viscosity
solutions of (1.1) are inherently different from the ones needed to derive error esti-
mates for smooth solutions. It has been documented in [7, 8] for the two-dimensional
problem that the method of Lakkis and Pryer with Lagrange elements of degree
k ≥ 2 captures viscosity solutions of the Monge-Ampère equation. Some numerical
methods proposed for the Monge-Ampère equation, e.g. [3], do not perform well
for non smooth solutions when the discrete problem is solved by Newton’s method.
On the other hand, with the mixed method one can use Newton’s method and still
have numerical convergence for non smooth solutions. This offers the possibility of
numerical solvers faster than the iterative methods proposed in [1]. In this paper
we assume that (1.1) has a smooth solution.

To guarantee the existence of a smooth solution, one has to assume that the
domain is smooth and strictly convex and the data f and g are also smooth [9].
The convex polygonal domain may be assumed to be an approximation of a smooth
and strictly convex domain. Another approach would be to consider elements with
curved faces and enforce Dirichlet boundary conditions by a penalty method as in
[3].
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The method of Lakkis and Pryer has been recently generalized in [8] where a
discontinuous finite element space is used to approximate the discrete Hessian.
This results in a more efficient numerical method and an analysis of both types
of methods were given in [8] for the two dimensional problem. The connection of
the method of Lakkis and Pryer with a Herman-Miyoshi mixed finite element was
also noted in [8]. But the idea to analyze the method from the point of view of
mixed methods, or to view it as the formal limit of the mixed method proposed in
the context of the vanishing moment methodology in [6], was not considered. One
possible reason is that Herman-Miyoshi type mixed methods were originally studied
for equations involving the biharmonic operator. Several technical arguments have
to be made as the linearized Monge-Ampère equation is a second order elliptic
equation. The contributions of this paper are:

(1) An analysis valid in both dimensions 2 and 3 and different from the one
given in [8] for the two dimensional problem.

(2) Error estimates for Lagrange elements of degree k ≥ 3 in dimensions 2 and
3.

(3) Numerical experiments for smooth solutions and Lagrange elements of de-
gree k = 1. Previous authors in their implementation eliminated the dis-
crete Hessian, which does not necessarily converge for k = 1, and concluded
the divergence of the method for linear elements.

The approach taken in this paper could help in the investigation of the method for
low order elements, i.e. for k = 1, 2.

The paper is organized as follows. In the second section we introduce some
notations, recall classical finite element results, present the mixed method for the
Monge-Ampère equation and useful facts about computations with determinants.
Our variational formulation is well posed for dimensions d = 2 and d = 3 but other
general statements are valid for arbitrary dimension d. In section 3 we give the
error analysis. The last section is devoted to the numerical results.

2. Preliminaries

2.1. Notation and assumptions. Let Ω be an open convex bounded subset of
R

d with boundary ∂Ω and let Th denote a triangulation of Ω into simplices K. We
denote by hK the diameter of the element K and h = maxK∈Th

hK . We make
the assumption that the triangulation is conforming and satisfies the usual shape
regularity condition, i.e. there exists a constant σ > 0 such that hK/ρK ≤ σ, for
all K ∈ Th where ρK denotes the radius of the largest ball inside K. To be able to
use global inverse estimates, c.f. (2.2) and (2.3) below, we require the triangulation
to be also quasi-uniform, i.e. there is a constant C > 0 such that h ≤ ChK for all
K ∈ Th.

We use the usual notation Lp(Ω), 2 ≤ p ≤ ∞ for the Lebesgue spaces and
Hs(Ω), 1 ≤ s < ∞ for the Sobolev spaces of elements of L2(Ω) with weak derivatives
of order less than or equal to s in L2(Ω). We recall that W s,∞(Ω) is the Sobolev
space of functions with weak derivatives of order less than or equal to s in L∞(Ω).
For a given normed space X , we denote by Xd the space of vector fields with
components in X and by Xd×d the space of matrix fields with each component in
X . The norm in X is denoted by || ||X and we omit the subscripts Ω, d, and d× d
when it is clear from the context. We will use the standard notation | |Hs for the
semi norm on Hs(Ω), Hs(Ω)d and Hs(Ω)d×d. The inner product in L2(Ω), L2(Ω)d,
and L2(Ω)d×d is denoted by (, ) and we use 〈, 〉 for the inner product on L2(∂Ω)


