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ENERGY NORM ERROR ESTIMATES FOR AVERAGED

DISCONTINUOUS GALERKIN METHODS IN 1 DIMENSION

GÁBOR CSÖRGŐ AND FERENC IZSÁK

Abstract. Numerical solution of one-dimensional elliptic problems is investigated using an aver-
aged discontinuous discretization. The corresponding numerical method can be performed using
the favorable properties of the discontinuous Galerkin (dG) approach, while for the average an
error estimation is obtained in the H

1-seminorm. We point out that this average can be regarded
as a lower order modification of the average of a well-known overpenalized symmetric interior
penalty (IP) method. This allows a natural derivation of the overpenalized IP methods.
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1. Introduction

Discontinuous Galerkin (dG) methods have been intensively studied in the last
decade. Due to the increasing need for highly accurate computation, these methods,
allowing local refinement strategies, became very popular. Their unified mathemat-
ical analysis for elliptic boundary value problems was initiated in [2], and a number
of articles have been published discussing its application to different problems. The
theory was put later in a more general framework [10], [11], [12]. Regarding the
practical computations, also some monographs have been appeared [15], [21]. The
widespread results of the theoretical investigation for dG methods have been sum-
marized recently in [8].

The error analysis for elliptic boundary value problems underwent a significant
development. For the multidimensional case, extra smoothness of the analytic
solution had been assumed in the original approach [2], which was alleviated in [14].
The a posteriori error analysis was initiated in [18] and [3] and was developed in [1]
and [13] to obtain easily computable and guaranteed error bounds and an efficient
a posteriori error estimator for a general 3-dimensional hp-adaptive algorithm has
been derived in [22]. All of these results concern a so-called dG-norm which arises
from the dG bilinear form. One can prove convergence also in a mesh-independent
(BV) norm [4], [7], which can be used again to avoid the assumption on extra
smoothness [8].

Several methods have been developed to obtain an error estimator in the L2-
norm and increase the accuracy of the dG approximation in negative Sobolev norms.
The key idea is to apply a post-processing which is a smoothing technique using
convolution with special kernels. This was first demonstrated in [6] for hyperbol-
ic problems. These techniques have been developed in many aspects, for recent
achievements see, e.g., [17] and [19]. Similar results including superconvergence
can be obtained for second-order elliptic problems in several space dimensions [5]
using an element-by-element postprocessing in the L2-norm.
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The objective of this paper is to develop an error estimator in the natural ener-

gy seminorm between a postprocessed dG type approximation and the analytical
solution in one space dimension for elliptic problems. In the main result (see The-
orem 3), we provide an upper estimate for the error ‖∇(ηh ∗uIP−u)‖L2

, where the
convolution gives the local average (a kind of postprocessing) and uIP denotes an
overpenalized version of the well-known symmetric interior penalty (IP) approxi-
mation.

We also throw new light upon a version of dG methods: we will point out that
a postprocessed IP method can be regarded as a lower order modification of a
continuous Galerkin method. In turn, this suggests a new derivation of a family
of overpenalized IP methods, where instead of a heuristic choice the penalty term
arises in a natural way.

These results are also confirmed in numerical experiments: the local average of
the proposed method and that of the overpenalized IP method are really close to
each other. Also, it will be verified that for the local averages the convergence in
the H1 seminorm is valid.

After the preliminaries, we introduce the finite element method which can be rec-
ognized both as a continuous and a discontinuous method. Then the corresponding
bilinear form is analyzed first in a simple situation and then its relation with the
interior penalty method is highlighted. Finally, we prove error estimation between
the postprocessed solution and the analytic one. As a consequence, we obtain the
above energy norm error estimation for a simple local average of the interior penalty
approximation.

2. Mathematical preliminaries

We investigate the finite element solution of the one-dimensional elliptic bound-
ary value problem

(1)

{

−∆u = f in Ω = (a, b) ⊂ R

u(a) = u(b) = 0,

where f ∈ L2(a, b) is given. For the numerical solution we consider a tessellation
of the interval (a, b) into the disjoint subintervals I0, I1, . . . , In such that

Ij = (γj , γj+1), a = γ0 < γ1 < . . . γn+1 = b.

The parameter h with
h = min

j∈{1,2,...,n+1}
(γj − γj−1)

denotes the minimal length of the subintervals.
The vector space for the polynomials of maximal degree k on the interval I is

denoted with Pk(I). For k = (k0, k1, . . . , kn) we define

Ph,k(a, b) = Pk0
(I0)⊕ Pk1

(I1)⊕ · · · ⊕ Pkn
(In),

the direct sum of the above polynomial spaces which corresponds to the piecewise
polynomials with the given maximal degree k0, k1, . . . , kn on I0, I1, . . . , In.

The symbol (·, ·)I∗ refers to the L2(I∗) scalar product on I∗ ⊂ (a, b). If I∗ = (a, b)
we omit the subscript. Accordingly, the generated L2(I∗)-norm is denoted with
‖ · ‖I∗ , where I∗ = (a, b) will be omitted.

For the numerical solution we use the family of the average and jump operators
{{·}}j and [[·]]j , which are defined by

{{u}}j =
1

2
· (lim

γj−
u+ lim

γj+
u) and [[u]]j = lim

γj−
u− lim

γj+
u


