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HIGHER DEGREE IMMERSED

FINITE ELEMENT METHODS FOR SECOND-ORDER

ELLIPTIC INTERFACE PROBLEMS

SLIMANE ADJERID, MOHAMED BEN-ROMDHANE, AND TAO LIN

Abstract. We present higher degree immersed finite element (IFE) spaces that can be used
to solve two dimensional second order elliptic interface problems without requiring the mesh to
be aligned with the material interfaces. The interpolation errors in the proposed piecewise pth

degree spaces yield optimal O(hp+1) and O(hp) convergence rates in the L2 and broken H1

norms, respectively, under mesh refinement. A partially penalized method is developed which
also converges optimally with the proposed higher degree IFE spaces. While this penalty is not
needed when either linear or bilinear IFE space is used, a numerical example is presented to show
that it is necessary when a higher degree IFE space is used.
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1. Introduction

Mathematical modeling of a physical phenomenon in a domain consisting of mul-
tiple materials often leads to an interface problem whose exact solution is required
to satisfy jump conditions across the material interfaces in addition to the pertinen-
t partial differential equation and the related boundary conditions. Conventional
finite element methods with body-fitted meshes can be used to solve interface prob-
lems with standard problem independent finite element basis functions. In general,
to achieve the optimal convergence of conventional finite element solutions, ele-
ments which are cut by the interface should be avoided [6, 9, 12]. This restriction
leads to several drawbacks, among which are

(i) The need for remeshing, sometimes many times, when solving problems with
moving interfaces. The same difficulty occurs for random interfaces where
many problems are solved with different interfaces (from different values of the
parameters) to estimate quantities of interest such as the expected solution.

(ii) Excessive mesh refinement to resolve small structures such as thin layers in
the domain.

(iii) Prohibition of the use of uniform meshes when solving problems whose inter-
faces have nontrivial geometries.

In the 1970s and 1980s, Babuška et al. [4, 5] developed the generalized finite
element method using the idea of constructing the basis functions on an element
by locally solving the interface problem in that element. Instead of generic poly-
nomials, they developed problem dependent local basis functions which may be
non-polynomials and are capable of capturing important features of the exact so-
lution. The recently developed IFE methods [2, 3, 11, 14, 15, 18, 19, 20, 21, 22]
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extended this idea and used the jump conditions in the interface problem to con-
struct local basis functions with piecewise polynomials. This idea is similar to
Hsieh-Clough-Tocher macro elements [8, 13] in which piecewise cubic polynomials
on three sub-triangles are used to satisfy the required continuity. IFE methods use
meshes that can be independent of interface geometry; hence they can circumvent
the limitations mentioned above for conventional finite element methods.

We note that almost all IFE spaces proposed up to now are based on linear,
bilinear, or trilinear polynomials [20, 21, 22, 28] except for those constructed for
one dimensional interface problems [2, 3, 11]. It is of great interests to develop
higher degree IFE spaces to be used in more efficient schemes such as those based
on discontinuous Galerkin formulations with local h and p refinement capabilities.
In this manuscript, we present procedures to construct arbitrarily higher degree IFE
spaces for solving the typical second order elliptic interface problem on a triangular
Cartesian mesh.

Following the usual IFE framework, we use standard finite element shape func-
tions on non-interface elements and we focus on how to construct higher degree IFE
shape functions in interface elements with piecewise polynomials that satisfy the
interface jump conditions required by an interface problem. However, as first ob-
served in [11], extra constraints need to be carefully introduced in order to uniquely
determine higher degree IFE functions with the optimal approximation capability
according to the degree of polynomials employed. Based on the idea in [2, 3], we
propose to construct higher degree IFE spaces with the interface jump conditions
required by the second order elliptic interface problem plus one of the two classes
of extended interface jump conditions. Both classes of extended jump conditions
involve higher order derivatives. In the first class, the second-order elliptic operator
and its normal derivatives of a higher degree IFE function are required to be con-
tinuous across the interface. The second class of extended jump conditions enforce
the continuity of higher order normal derivatives of the flux of an IFE function.

Figure 1.1. A two-material domain Ω

IFE functions are generally not continuous across interface edges; hence IFE
methods for interface problems are usually nonconforming in the sense that these
IFE spaces are not subspaces of H1(Ω) to which the exact solution belongs. While
a simple Galerkin formulation works satisfactorily for both the linear and bilin-
ear IFE spaces [15, 18, 20, 22], we have noticed that the discontinuity of higher
degree IFE functions across interface edges cannot be neglected in developing nu-
merical schemes for solving interface problems. We have found that penalization


