GLOBAL H^2 -REGULARITY RESULTS OF THE 3D PRIMITIVE EQUATIONS OF THE OCEAN

YINNIAN HE AND JIANHUA WU

Abstract. In this article, we consider the 3D viscous primitive equations (PEs for brevity) of the ocean under two physically relevant boundary conditions for the H^1 and H^2 smooth initial data, respectively. The H^2 regularity result of the solution for the viscous PEs of the ocean has been unknown since the work by Cao and Titi [3], and Kobelkov [26]. In this article we provide the global H^2 -regularity results of the solution and its time derivatives for the 3D viscous primitive equations of the ocean by using the L^6 estimates developed in [3] and some new energy estimate techniques.

Key words. Primitive equations, ocean, regularity.

1. Introduction

Given a smooth bounded domain $\omega \subset \mathbb{R}^2$ and the cylindrical domain $\Omega = \omega \times (-d, 0) \subset \mathbb{R}^3$, we consider in Ω the following 3D viscous PEs of the ocean with rigid lid approximation and in the presence of one stratification:

(1.1)
$$u_t + L_1 u + (u \cdot \nabla) u + w \partial_z u + \nabla P + f \vec{k} \times u = F_1,$$

(1.2)
$$\theta_t + L_2\theta + (u \cdot \nabla)\theta + w\partial_z\theta - \sigma w = F_2$$

(1.3)
$$\nabla \cdot u + \partial_z w = 0,$$

(1.4)
$$\partial_z P + \gamma \theta = 0.$$

The unknowns for the 3D viscous PEs are the fluid velocity field $(u, w) = (u_1, u_2, w) \in \mathbb{R}^3$ with $u = (u_1, u_2)$ being the horizontal velocity, the density θ and the pressure P. Here $f = f_0(\beta + y)$ is the given Coriolis rotation frequency with β -plane approximation, F_1 and F_2 are two given functions and \vec{k} is the vertical unit vector, $\sigma > 0$ is the stratification constant of the ocean and $\gamma > 0$ is the gravitational constant. The elliptic operators L_1 and L_2 are given respectively as the following:

$$L_i = -\nu_i \Delta - \mu_i \partial_z^2, \ i = 1, \ 2.$$

Here the positive constants ν_1 , μ_1 are the horizontal and vertical viscosity coefficients; while the positive constants ν_2 , μ_2 are the horizontal and vertical thermal diffusivity coefficients and

$$\nabla = (\partial_x, \partial_y), \ \Delta = \partial_{xx} + \partial_{yy}, \ \partial_{x_i} = \frac{\partial}{\partial x_i}, \ \partial_{x_i x_i} = \partial_{x_i}^2,$$

with i = 1, 2, 3 and $(x_1, x_2, x_3) = (x, y, z)$.

For more details on the PEs of the ocean, the reader is referred to [7, 28, 29, 34] for the physical aspect, and to [3, 20, 25, 22, 23, 24, 31, 32, 16, 17, 18, 19, 25] for the mathematical aspect.

Received by the editors March 4, 2014.

²⁰⁰⁰ Mathematics Subject Classification. 35B41, 35Q35, 37L, 65M70, 86A10.

This research was supported by the NSFs of China (No.11271298, 11362021 and 11271236).

Here and after, we use the following notations:

$$\eta_t = \frac{\partial \eta}{\partial t}, \ \phi_{x_i} = \partial_{x_i} \phi, \ \psi_{x_i x_i} = \partial_{x_i x_i} \psi,$$

with i = 1, 2, 3 for any $\eta(t) \in H^1(0, \infty)$, $\phi(x, y, z) \in H^1(\Omega)$ and $\psi(x, y, z) \in H^2(\Omega)$. We partition the boundary of Ω into the following three parts:

$$\begin{split} \Gamma_u &= \{(x,y,z)\in \bar{\Omega}; z=0\},\\ \Gamma_b &= \{(x,y,z)\in \bar{\Omega}; z=-d\},\\ \Gamma_s &= \{(x,y,z)\in \bar{\Omega}; (x,y)\in \partial \omega, \ -d\leq z\leq 0\}. \end{split}$$

Next, we provide the system (1.1)-(1.4) with the following boundary conditionswith the wind-driven on the top surface and non-slip and non-heat flux on the side walls and the bottom (see, e.g., page 246 in [3], page 160 in [20] and page 1037 in [25]):

on
$$\Gamma_u$$
, $\partial_z u = d \tau^*$, $w = 0$, $\partial_z \theta = -\alpha(\theta - \theta^*)$;
on Γ_b , $\partial_z u = 0$, $w = 0, \partial_z \theta = 0$;
on Γ_s , $u \cdot \mathbf{n} = 0$, $\frac{\partial u}{\partial \mathbf{n}} \times \mathbf{n} = \mathbf{0}$, $\frac{\partial \theta}{\partial \mathbf{n}} = \mathbf{0}$,
or on Γ_s , $u = 0$, $\frac{\partial \theta}{\partial \mathbf{n}} = 0$,

where $\tau^* = \tau^*(x, y)$ is the wind stress on the ocean surface, α is a positive constant, **n** is the normal vector of Γ_s and $\theta^* = \theta^*(x, y)$ is the typical density distribution of the top surface of the ocean. Based on the above condition, it is natural to assume that $\tau^*(x, y)$ and $\theta^*(x, y)$ satisfy

$$\tau^* \cdot \mathbf{n} = \mathbf{0}, \ \frac{\partial \tau^*}{\partial \mathbf{n}} \times \mathbf{n} = \mathbf{0}, \ \text{ or } \tau^* = \mathbf{0}, \text{ and } \frac{\partial \theta^*}{\partial \mathbf{n}} = \mathbf{0} \text{ on } \partial \omega$$

Due to this condition, we can convert the previous boundary condition into the homogeneous by replacing (u, θ) by $(u + \frac{1}{2}([(z+d)^2 - \frac{1}{3}d^3]\tau^*, \theta + \theta^*)$ (refer to page 248 in [3]).

Hence, we consider the following boundary conditions for the 3D viscous PEs:

(1.5)
$$w|_{\Gamma_u \cup \Gamma_b} = 0.$$

(1.6-1)
$$\partial_z u|_{\Gamma_u \cup \Gamma_b} = 0, \ u \cdot \mathbf{n}|_{\Gamma_s} = 0, \ \frac{\partial u}{\partial \mathbf{n}} \times \mathbf{n}|_{\Gamma_s} = \mathbf{0};$$

(1.6-2) or
$$\partial_z u|_{\Gamma_u \cup \Gamma_b} = 0, \ u|_{\Gamma_s} = 0;$$

(1.7)
$$\partial_z \theta|_{\Gamma_b} = (\partial_z \theta + \alpha \theta)|_{\Gamma_u} = 0, \ \frac{\partial \theta}{\partial \mathbf{n}}|_{\Gamma_s} = 0,$$

refer to (28)-(29) of page 248 in [3] and (1.3)-(1.4) of page 160 in [20] for the boundary condition (1.5), (1.6-1) and (1.7), and Remark 2.1 of page 1038 in [25] for the boundary condition (1.5), (1.6-2) and (1.7).

Also, the initial conditions of u(x, y, z, t) and $\theta(x, y, z, t)$ should be given by

(1.8)
$$u(x, y, z, 0) = u_0(x, y, z), \ \theta(x, y, z, 0) = \theta_0(x, y, z).$$

Using the Dirichlet boundary condition (1.5) of w on $\Gamma_u \cap \Gamma_b$ and (1.3)-(1.4), we have

$$w(x, y, z, t) = -\int_{-d}^{z} \nabla \cdot u(x, y, \xi, t) d\xi, \quad \int_{-d}^{0} \nabla \cdot u(x, y, \xi, t) d\xi = 0,$$
$$P(x, y, z, t) = p(x, y, t) - \gamma \int_{-d}^{z} \theta(x, y, \xi, t) d\xi.$$

453