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Abstract. In 1995 the genesis of stabilized methods was established by Professor Hughes from
the standpoint of the variational multiscale theory (VMS). By splitting the solution into resolved
and unresolved scales, it was unveiled that stabilized methods take into account an approximation

of the unresolved scales or error into the finite element solution. In this work, the VMS theory
is exploited to formulate an explicit a-posteriori error estimator, consistent with the assumptions
inherent to stabilized methods.The proposed technology, which is especially suited for fluid flow
problems, is very economical and can be implemented in standard finite element codes. It has

been shown that, in practice, the method is robust uniformly from the diffusive to the hyperbolic
limit.The success of the method can be explained by the fact that in stabilized methods the
element local problems for the fine-scale Green’s function capture most of the error and the error
intrinsic time-scales are an approximation to the solution of the dual problem. Applications to

the Euler and linear elasticity equations are shown.
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1. Introduction

The main objective of numerical methods is to obtain reliable approximate so-
lutions. One way of achieving this goal is by quantifying the error and generating
adaptive meshes which distribute the error of the numerical solution within the
problem domain [1, 2]. This paper summarizes current research on explicit a pos-
teriori error estimation for stabilized methods based on the variational multiscale
theory (VMS) [25, 27]. This theory is especially suited for estabilized methods and
fluid mechanics problems, but it also may find application in solid mechanics.

Within the VMS framework, the first explicit a posteriori error estimator was
proposed for the transport equation in [17]. This formulation is a residual-based
error estimator and, therefore, the error in each element is estimated as a function
of the residual inside the element. There, the capabilities to generate adapted
meshes were shown. The resulting method fits in the framework of residual-based
methods proposed in [31, 32] but, here, the constants of the error estimates, which
are dimensionally consistent, are explicitly given by the theory.

Further achievements on the technology for the transport equation were present-
ed in [13, 17, 18]. Later, the error estimator was extended for the multi-dimensional
transport equation in [20], where the jump of the flux along the element edges must
be taken into account to attain reliable error estimates in the diffusive dominated
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regime. These estimators have been tested with practical cases attaining reliable
and robust results. All these findings are summarized in [15].

Subsequently, the a posteriori error estimator was extended to the topic of quan-
tities of interest in [19] and to higher-order finite elements [28, 16].

For elliptic problems other methods based on the VMS theory are those of [7,
8, 30, 29]. But in these, the subscales are computed at the element level with the
corresponding partial differential equations.

The next challenge consists of extending the present technology to systems of
equations. Thus, this paper presents recent advances in relation to the Euler equa-
tion and linear elasticity. The error estimator formulation and practical examples
are explained in this paper.

2. VMS theory. Error estimation

2.1. The abstract problem. Let Ω be a spatial domain with boundary Γ. The
boundary is partitioned into two non-overlapping zones Γg and Γh such that Γg ∪
Γh = Γ and Γg ∩Γh = ⊘. The essential boundary condition g is applied on Γg and
the natural boundary condition, h, on Γh.

The strong form of the boundary-value problem consists of finding u : Ω → R
such that for the given functions f : Ω → R, g : Γg → R, h : Γh → R, the following
equations are satisfied

(1)

 Lu = f in Ω
u = g on Γg

Bu = h on Γh

with L being a general differential operator and B, an operator acting on the bound-
ary emanating from integration-by-parts.

In order to introduce the weak form, we have to define suitable spaces for the
trial solution, S, and the weighting functions V. The weak form is obtained by
multiplying the strong form equation by a weighting function, w, and integrating
by parts. Hence, the weak form can be formulated as:

Find u ∈ S such that

(2) a(w, u) = (w, f) + (w, h)Γh
∀w ∈ V

where a(·, ·) is the corresponding bilinear form; (·, ·) the L2(Ω) inner product and
(·, ·)Γh

, the L2(Γh) inner product on Γh.

Application of the finite element method necessitates the discretization of the
domain Ω into nel non-overlapping elements with domain Ωe and boundary Γe. Let

Ω̃ and Γ̃ denote the union of element interiors and the inter-element boundaries,
respectively,

(3)

Ω̃ =

nel∪
e=1

Ωe

Γ̃ =

nel∪
e=1

Γe\Γ

In addition, let [[·]] be the jump operator of a function across a discontinuity, for
example, an inter-element boundary. According to Fig. 1, the jump of a function


