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Abstract. In this work, we present a cell-centered time-splitting technique for solving evolution-
ary diffusion equations on triangular grids. To this end, we consider three variables (namely the
pressure, the flux and a weighted gradient) and construct a so-called expanded mixed finite ele-
ment method. This method introduces a suitable quadrature rule which permits to eliminate both
fluxes and gradients, thus yielding a cell-centered semidiscrete scheme for the pressure with a local
10-point stencil. As for the time integration, we use a domain decomposition operator splitting
based on a partition of unity function. Combining this splitting with a multiterm fractional step
formula, we obtain a collection of uncoupled subdomain problems that can be efficiently solved in
parallel. A priori error estimates for both the semidiscrete and fully discrete schemes are derived
on smooth triangular meshes with six triangles per internal vertex.
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1. Introduction

We consider a parabolic initial-boundary value problem that models single phase
flow in porous media. The problem can be written as a system of two first-order
equations of the form

pt +∇ · u = f in Ω× (0, T ],(1a)

u = −K∇p in Ω× (0, T ],(1b)

p = p0 in Ω× {0},(1c)

p = g on ΓD × (0, T ],(1d)

u · n = 0 on ΓN × (0, T ],(1e)

where Ω ⊂ R
2 is a convex polygonal domain with Lipschitz continuous boundary

∂Ω = ΓD ∪ ΓN such that ΓD ∩ ΓN = ∅. In this formulation, K ≡ K(x) ∈ R
2×2 is

a symmetric and positive definite tensor satisfying, for some 0 < κ∗ ≤ κ∗ < ∞,

(2) κ∗ξ
T ξ ≤ ξTK ξ ≤ κ∗ξT ξ ∀ ξ 6= 0 ∈ R

2,

and n is the outward unit vector normal to ∂Ω. Typically, p represents the fluid
pressure, u is the Darcy velocity and K denotes the hydraulic conductivity tensor.

In this work, we propose and analyze a family of mixed finite element (MFE)
time-splitting methods for the solution of problem (1). Via the method of lines
approach, the original problem is first reduced to a system of ordinary differential
equations using a spatial semidiscretization technique. More precisely, we consider
a variant of the standard mixed formulation called the expanded MFE method (cf.
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[1, 2, 3, 10, 12]). Besides the pressure p and the flux u, this method introduces an
additional explicit unknown, namely the adjusted gradient λ. The newly defined
variable avoids inverting tensor K, thus allowing for the presence of non-negative
conductivities in the flow domain Ω (as a difference, K is assumed to be strictly
positive in the standard mixed method). Following [1, 2], we consider the lowest
order Raviart–Thomas (RT0) finite element spaces on triangles (cf. [21]), and
subsequently define a suitable quadrature rule that permits to eliminate both u

and λ. As a result, the expanded MFE formulation is reduced to a cell-centered
finite difference scheme for the pressure with a local 10-point stencil. In the context
of elliptic problems, this idea has been already studied in [6, 8, 16] for the standard
mixed method on triangular grids. Similar strategies have been also investigated
in the case of rectangular elements (cf. [3, 22, 28]).

The stiff initial value problem resulting from the previous stage is integrated in
time by using a domain decomposition splitting technique. This kind of splitting
was first introduced in [25, 26] for the construction of regionally-additive schemes
and has been subsequently used in [14, 15, 19] for solving linear parabolic problems.
In combination with this splitting, we define a family of time integrators belonging
to the class of m-part fractional step Runge–Kutta (FSRKm) methods (cf. [9]).
Such methods are composed by merging together m diagonally implicit Runge–
Kutta schemes into a single composite formula. In particular, we consider the
so-called Yanenko’s method (cf. [30]), which has been proved to be unconditionally
contractive for different splitting functions (see [17, 27]). The fully discrete scheme
is thus a collection of uncoupled subdomain problems that can be solved in parallel
without the need for Schwarz-type iteration procedures.

The design and analysis of expanded MFE fractional step methods for parabolic
problems have been addressed in the earlier works [4, 5]. In both cases, though,
the problems were discretized on rectangular meshes using an alternating direction
implicit (ADI) technique. In the present paper, we extend the results from these
works to the case of domain decomposition splitting methods on triangular grids,
thus yielding added flexibility to the resulting algorithms.

The rest of the paper is outlined as follows. In Section 2, we introduce the
expanded MFE method and subsequently derive a cell-centered finite difference
scheme for the pressure. The convergence analysis of the semidiscrete scheme is
described in the next section. Section 4 further presents the family of fractional
step time integrators based on a domain decomposition splitting technique. Finally,
a priori error estimates for the fully discrete scheme are obtained in Section 5.

2. The expanded mixed finite element method

In order to define an expanded formulation, we need to introduce the additional
unknown λ ≡ λ(x, t) = −G−1∇p. This variable is referred to as the adjusted
gradient and involves a symmetric and positive definite tensor G ≡ G(x) ∈ R

2×2,
to be defined below. In this context, the equation (1b) can be rewritten as

Gλ = −∇p in Ω× (0, T ],(3a)

u = KGλ in Ω× (0, T ].(3b)

These two equations, together with (1a) and the corresponding initial and boundary
data, represent the so-called expanded mixed formulation in the triple (u, λ, p).

2.1. The weak formulation. For a domain R ⊂ R
2, let W k,p(R) be the standard

Sobolev space, with k ∈ R and 1 ≤ p ≤ ∞, endowed with the norm and seminorm
‖ · ‖k,p,R and | · |k,p,R, respectively. Let Hk(R) be the Hilbert space W k,2(R),


