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GLOBAL CONVERGENCE OF A POSTERIORI ERROR
ESTIMATES FOR THE DISCONTINUOUS GALERKIN METHOD
FOR ONE-DIMENSIONAL LINEAR HYPERBOLIC PROBLEMS

MAHBOUB BACCOUCH

Abstract. In this paper we study the global convergence of the implicit residual-based a posteriori
error estimates for a discontinuous Galerkin method applied to one-dimensional linear hyperbolic
problems. We apply a new optimal superconvergence result [Y. Yang and C.-W. Shu, SIAM J.
Numer. Anal., 50 (2012), pp. 3110-3133] to prove that, for smooth solutions, these error estimates
at a fixed time converge to the true spatial errors in the L?-norm under mesh refinement. The
order of convergence is proved to be k 4+ 2, when k-degree piecewise polynomials with & > 1
are used. As a consequence, we prove that the DG method combined with the a posteriori error
estimation procedure yields both accurate error estimates and O(h*+2) superconvergent solutions.
We perform numerical experiments to demonstrate that the rate of convergence is optimal. We
further prove that the global effectivity indices in the L?-norm converge to unity under mesh
refinement. The order of convergence is proved to be 1. These results improve upon our previously
published work in which the order of convergence for the a posteriori error estimates and the global
effectivity index are proved to be k+3/2 and 1/2, respectively. Our proofs are valid for arbitrary
regular meshes using P* polynomials with k > 1 and for both the periodic boundary condition
and the initial-boundary value problem. Several numerical simulations are performed to validate
the theory.
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1. Introduction

In this paper we analyze a residual-based a posteriori error estimates of the spatial
errors for the semi-discrete discontinuous Galerkin (DG) method applied to the
following one-dimensional linear hyperbolic conservation laws

(1.1a) up + cuy = f(x,t), x€la,b], t€[0,T], ¢>0,

subject to the initial condition

(1.1b) u(z,0) = uo(x), x € [a,b],

and to either the Dirichlet boundary condition

(1.1c) u(a,t) =g(t), tel0,T],

or to the periodic boundary condition

(1.1d) u(a,t) = u(b,t), tel0,T].

Here ¢ > 0 is a constant speed and [0,7] is a finite time interval. In this paper,

we consider, without loss of generality, (1.1) with ¢ = 1. In our analysis we select
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the initial and boundary conditions and the source, f(z,t), such that the exact
solution, u(x,t), is a smooth function on [a, b] x [0, T].

The DG method considered here is a class of finite element methods using com-
pletely discontinuous piecewise polynomials for the numerical solution and the test
functions. DG method combines many attractive features of the classical finite
element and finite volume methods. It is a powerful tool for approximating some
partial differential equations which model problems in physics, especially in flu-
id dynamics or electrodynamics. In particular, it provides an appealing approach
to address problems having discontinuities, such as those that arise in hyperbolic
conservation laws. DG method was initially introduced by Reed and Hill in 1973
as a technique to solve neutron transport problems [30]. In 1974, LaSaint and
Raviart [29] presented the first numerical analysis of the method for a linear advec-
tion equation. Since then, DG methods have been used to solve ordinary differential
equations [5, 18, 28, 29], hyperbolic [14, 15, 16, 17, 23, 24, 26, 27] and diffusion and
convection-diffusion [12, 13, 31] partial differential equations. Consult [22] and the
references cited therein for a detailed discussion of the history of DG method and
a list of important citations on the DG method and its applications.

In recent years, the study of superconvergence and a posteriori error estimates of
DG methods has been an active research field in numerical analysis. A posteriori
error estimators employ the known numerical solution to derive estimates of the
actual solution errors. They are also used to steer adaptive schemes where either
the mesh is locally refined (h-refinement) or the polynomial degree is raised (p-
refinement). For an introduction to the subject of a posteriori error estimation
see the monograph of Ainsworth and Oden [9]. A knowledge of superconvergence
properties can be used to (i) construct simple and asymptotically exact a posteriori
estimates of discretization errors like the one considered in this paper and (ii)
help detect discontinuities to find elements needing limiting, stabilization and/or
refinement. Superconvergence properties for DG methods have been studied in [5, 8,
25, 29] for ordinary differential equations, [4, 10, 5, 7, 21, 32] for hyperbolic problems
and [2, 3, 6, 7, 11, 19, 20, 21] for diffusion and convection-diffusion problems.

The first superconvergence result for standard DG solutions of ordinary differen-
tial equations appeared in Adjerid et al. [5]. They proved that the k-degree DG
solution of v/ — au = 0 is O(h¥*2) superconvergent at the roots of (k + 1)-degree
right Radau polynomial. Numerical computations indicate that these superconver-
gence results extend to DG solutions of transient convection problems. However
no analysis has been carried out for these results. Later, Cheng and Shu [21] stud-
ied the superconvergence property for the DG methods for solving one-dimensional
time-dependent linear conservation laws. They proved superconvergence towards
a particular projection of the exact solution when the upwind flux is used. The
order of superconvergence is proved to be k + 3/2, when k-degree piecewise poly-
nomials with & > 1 are used. However, the superconvergence rate obtained in [21]
is not optimal. Adjerid and Baccouch [4] investigated the global convergence of
the implicit residual-based a posteriori error estimates of Adjerid et al. [5]. They
applied the superconvergence results of Cheng and Shu [21] and proved that these
estimates at a fixed time t converge to the true spatial error in the L?-norm under
mesh refinement. The order of superconvergence is proved to be k + 3/2. They
further proved that the global effectivity indices converge to unity at O(h'/2) rate.
In this paper, we improve upon the result in [4]. A new optimal superconvergence



