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FIXED-POINT FAST SWEEPING WENO METHODS FOR
STEADY STATE SOLUTION OF SCALAR HYPERBOLIC
CONSERVATION LAWS

SHANQIN CHEN

Abstract. Fast sweeping methods were developed in the literature to efficiently solve static
Hamilton-Jacobi equations. This class of methods utilize the Gauss-Seidel iterations and alter-
nating sweeping strategy to achieve fast convergence rate. They take advantage of the properties
of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of
the corresponding Hamilton-Jacobi equation in a certain direction simultaneously in each sweep-
ing order. In [16], the Gauss-Seidel idea and alternating sweeping strategy were adopted to the
time-marching type fixed-point iterations to solve the static Hamilton-Jacobi equations, and nu-
merical examples verified at least a 2 times acceleration of convergence even on relatively coarse
grids. In this paper, we apply the same approach to solve steady state solution of hyperbolic
conservation laws. We use numerical examples to verify that a 2 times acceleration of convergence
is achieved. And the computational cost is exactly the same as the time-marching scheme at each
iteration. Based on the Gauss-Seidel iterations, we explore the successive overrelaxation (SOR)
approach to further improve the performance of our fixed-point sweeping methods.
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1. Introduction

Steady state problems for hyperbolic conservation laws and related Hamilton-
Jacobi (HJ) equations are common mathematical models appearing in many appli-
cations, such as fluid mechanics, optimal control, differential games, image pro-
cessing and computer vision, geometric optics, etc. For these boundary value
problems, their solution information propagates along characteristics starting from
the boundary. A class of iterative methods, called fast sweeping (FS) methods
[1, 6,9, 12, 14, 16, 17, 18], take advantage of this property and try to cover a family
of characteristics of the HJ equations in a certain direction simultaneously in each
iteration. This iterative technique can achieve very fast convergence for computa-
tions of steady state solutions. Fast sweeping methods actually provide a general
methodology / technique to accelerate the convergence of numerical schemes for
steady state problems of hyperbolic type PDEs, although currently they are mostly
used for solving HJ equations.

Since fast sweeping technique mainly takes advantage of the characteristics prop-
erties of hyperbolic PDEs to accelerate the iteration convergence, it is natural to
apply this technique for solving steady states of general hyperbolic PDEs [2, 8].
In [16], we proposed fixed-point fast sweeping methods for static Hamilton-Jacobi
equations. The fixed-point fast sweeping approach is based on the time marching
approach and it has the advantages that the method is explicit and free of solving
nonlinear equations, and it is straightforward to apply high order approximations
and different numerical Hamiltonian for the general Hamilton-Jacobi equations.
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In this paper we apply this “explicit fast sweeping technique”, or the “fixed-point
fast sweeping method” to solve the steady state problems of hyperbolic conserva-
tion laws. The Gauss-Seidel idea and alternating sweeping strategy are adopted to
the time marching approach to accelerate its convergence to steady states without
any additional computational cost. Via numerical experiments, we verify this ac-
celeration. In this paper, we use the standard third order finite difference weighted
essentially non-oscillatory (WENOQO) scheme with Lax-Friedrichs flux splitting [5]
as the representation of high order schemes for hyperbolic conservation laws. But
this general approach can be directly applied to other schemes such as the residual
distribution WENO schemes [3] or Runge-Kutta discontinuous Galerkin methods
[4]. Tt can also be applied to other numerical fluxes such as Godunov flux, etc
[10]. Based on the Gauss-Seidel iterations, we explore the successive overrelaxation
(SOR) approach to further improve the performance of our fixed-point sweeping
methods.

In Section 2, we describe the fixed-point fast sweeping WENO methods for solv-
ing hyperbolic conservation laws, based on Gauss-Seidel iterations and SOR itera-
tions respectively. In Section 3, Numerical studies are performed to verify the faster
convergence speed than the usual time-marching approach. Concluding remarks are
given in Section 4.

2. Fixed-point fast sweeping WENO methods

Consider two-dimensional steady state problems of hyperbolic conservation laws
with appropriate boundary conditions

(1) f(uw)z +g(u)y = h(u,x,y),

where u is the unknown function, f and g are flux functions, and h is the source
term. A high order spatial discretization of (1) leads to a nonlinear system. In this
paper, we use the third order finite difference WENO scheme with Lax-Friedrichs
flux splitting [10] for the spatial discretization.

2.1. WENO discretization. For the hyperbolic terms f(u),+ g(u),, the conser-
vative finite difference scheme we use approximates the point values at a uniform
(or smoothly varying) grid (z;,y;) in a conservative fashion. Namely, the deriva-
tive f(u), at (z;,y;) is approximated along the line y = y; by a conservative flux
difference

(2) fu)z|o=e, = é(ﬁﬂ/z - fifl/Q)u

where for the third order WENO scheme the numerical flux fz‘+1 /2 depends on the
three-point values f(u;), | = ¢ — 1,4,4+ 1, when the wind is positive (i.e., when
f'(u) > 0 for the scalar case, or when the corresponding eigenvalue is positive for the
system case with a local characteristic decomposition). This numerical flux fz‘+1 /2
is written as a convex combination of two second order numerical fluxes based
on two different substencils of two points each, and the combination coefficients
depend on a “smoothness indicator” measuring the smoothness of the solution in
each substencil. The detailed formula is

(3) fiv1/2 =wo %f(ui) + %f(ui+1):| + w1 {—%f(ui—l) + gf(ui) ;

where
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