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ON THE TIME APPROXIMATION OF THE STOKES

EQUATIONS WITH NONLINEAR SLIP BOUNDARY

CONDITIONS

J. K. DJOKO

Abstract. This work is concerned with the numerical approximation of the unsteady Stokes flow
of a viscous incompressible fluid driven by a threshold slip boundary condition of friction type.
The continuous problem is formulated as variational inequality, which is next discretize in time
based on backward Euler’s scheme. We prove existence and uniqueness of the solution of the time
discrete problem by means of a regularization approach. Finally, we derive error estimates that
justify the convergence property of the discretization proposed.
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1. Introduction

We consider unsteady flows of incompressible viscous fluids modeled by the S-
tokes system

ut − 2ν div ε(u) +∇p = f in Q = Ω× (0, T ),(1.1)

divu = 0 in Q,(1.2)

where Ω is the flow region, a bounded domain in R
2, while ε(u) = 1

2 [∇u+(∇u)T ].
The motion of the incompressible fluid is described by the velocity u(x, t) and
pressure p(x, t). In (1.1) f(x, t) is the external body force per unit volume, while ν
is the kinematic viscosity. Equations (1.1) and (1.2) are supplemented by boundary
and initial conditions. We first assume that

(1.3) u(x, 0) = u0 on Ω,

where u0 is a given function, for which precise assumptions will be introduced
below, and Ω is the closure of Ω. Next in order to describe the motion of the
fluid at the boundary, we assume that the boundary of Ω, say, ∂Ω is made of two
components S (say the outer wall) and Γ (the inner wall), and we require that
∂Ω = S ∪ Γ, with S ∩ Γ = ∅. We assume the homogeneous Dirichlet condition on
Γ, that is

(1.4) u = 0 on Γ× (0, T ).

We have chosen to work with homogeneous condition on the velocity in order to
avoid the technical arguments linked to the Hopf lemma (see [1], Chapter 4, Lemma
2.3). On S, we first assume the impermeability condition

(1.5) uN = u · n = 0 on S × (0, T ),

Received by the editors January 1, 2012 and, in revised form, March 7, 2013.
2000 Mathematics Subject Classification. 65M12, 76D07, 35J85, 35Q30, 76D30, 76D07.
The author thank the referees for pertinent remarks that have led to some improvements of

this study. I also thank our colleague Dr Christiaan Leroux for some stimulating discussions at
the beginning of this project.

34



ON THE TIME APPROXIMATION OF THE STOKES EQUATIONS 35

where n is the outward unit normal on the boundary ∂Ω, and uN is the normal
component of the velocity,while uτ = u − uNn is its tangential component. In
addition to (1.5) we also impose on S, a threshold slip condition [2, 3, 4], which is
the main ingredient of this work. The threshold slip condition can be formulated
with the knowledge of a positive function g : S −→ (0,∞) which is called the
barrier of threshold function and the tangential part of Tn as follows:
(1.6)

if |(Tn)τ | < g then uτ = 0,

if |(Tn)τ | = g then uτ 6= 0 , and − (Tn)τ = g
uτ

|uτ |






on S × (0, T ).

Of course in (1.6), T = 2νε(u) − pI is the Cauchy stress tensor with I being the
identity tensor. It should quickly be mentioned that (1.6) is equivalent to [5]

(1.7) (Tn)τ · uτ + g|uτ | = 0 on S × (0, T ),

which is re-written with the use of sub-differential as

(1.8) −(Tn)τ ∈ g∂|uτ | on S × (0, T ),

where ∂| · | is the sub-differential of the real valued function | · |, with |w|2 = w ·w.
We recall that if X is a Hilbert space equipped with the inner product denoted as
·, and x0 ∈ X, then

(1.9) y ∈ ∂Ψ(x0) if and only if Ψ(x)−Ψ(x0) ≥ y · (x− x0) ∀x ∈ X.

The slip boundary conditions of friction type (1.6) can be justified by the fact that
frictional effects of the fluid at the pores of the solid can be very important, and
this can be seen in fiber spinning. Hence one observes that different boundary con-
ditions describe different physical phenomena. The boundary condition (1.6) has
also been applied successfully to some flow phenomena in concrete situations such
as oil flow over or beneath sand layers [6, 7]. In [8], a generalization of the boundary
condition (1.6) is formulated and analyzed for the steady Stokes flow, while the case
of Navier-Stokes equations has been examined in [9]. We should re-iterate that for
fluids with moderate velocities and stresses, the no-slip condition is well suited and
describe the fact that the fluid adheres to the boundary of the flow domain.

The subject of the present work is to approximate the two-dimensional prob-
lem (1.1)· · · (1.6) in time, using the implicit Euler scheme, and establish its well-
posedness, stability and measure the difference between the exact and discrete solu-
tion. We also want our scheme to have some properties observed at the continuous
level. The existence theory of (1.1)· · · (1.6) provided in [2, 3, 4] used semi-group
approach, so no estimates of the solution are available in that research. Hence
for completeness, we revisit the existence and uniqueness question by adopting the
Galerkin’s approach together with the energy method. By doing so, we have some
a priori estimates that we would like our numerical scheme to have. Similar stud-
ies have been presented for the case of Navier-Stokes equations with Dirichlet or
periodic boundary conditions in [10, 11, 12, 13, 14], reaction diffusion equations
and parabolic p-Laplacian in [15, 16]. To better understand the analysis of the
time discrete problem, it is important to present the main steps of the existence
result of (1.1)· · · (1.6) which is done by regularization approach, Faedo-Galerkin
approximation and using some compactness arguments [5]. The regularization is
important because we have a non differentiable term which brings the inequality
into the system. But also from the numerical analysis viewpoint, the regularization
itself is worth considering (as we are going to see, the solution of the regularized and


