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IMPLICIT ASYMPTOTIC PRESERVING SCHEMES FOR

SEMICONDUCTOR BOLTZMANN EQUATION IN THE

DIFFUSIVE REGIME

JIA DENG

Abstract. We design several implicit asymptotic-preserving schemes for the linear semiconductor

Boltzmann equation with a diffusive scaling, which lead asymptotically to the implicit discretiza-
tions of the drift-diffusion equation. The constructions are based on a stiff relaxation step and

a stiff convection step obtained by splitting the system equal to the model equation. The one

space dimensional schemes are given with the uniform grids and the staggered grids, respectively.
The uniform grids are considered only in two space dimension. The relaxation step is evolved

with the BGK-penalty method of Filbet and Jin [F. Filbet and S. Jin, J. Comp. Phys. 229(20),
7625-7648, 2010], which avoids inverting the complicated nonlocal anisotropic collision operator.

The convection step is performed with a suitable implicit approximation to the convection term,

which gives a banded matrix easy to invert. The von-Neumman analysis for the Goldstein-Taylor
model show that the one space dimensional schemes are unconditionally stable. The heuristic

discussions suggest that all the proposed schemes have the correct discrete drift-diffusion limit.

The numerical results verify that all the schemes are asymptotic-preserving. As far as we know,
they are the first class of asymptotic-preserving schemes ever introduced for the Boltzmann e-

quation with a diffusive scaling that lead to an implicit discretization of the diffusion limit, thus

significantly relax to stability condition.
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1. Introduction

The semiconductor Boltzmann equation, serving as the mathematical model for
the highly integrated semiconductor, has a diffusive scaling characterized by the
Knudsen number δ (which denotes the ratio of the mean free path of the particle over
a typical length) when the electric potential is weak. As δ → 0+, the semiconductor
Boltzmann equation leads asymptotically to the drift-diffusion equation, which is
usually satisfactory for the region having both δ � 1 and the initial solution around
the local equilibrium state. In practical applications, it is often found that δ varies
with very different scale of magnitude within one computational domain and the
initial data is in the nonlocal equilibrium state. For the sake of accuracy and
efficiency, one usually uses either the domain decomposition type methods [3, 4, 9,
18, 27, 28] or the asymptotic-preserving (AP) schemes [5, 11, 14, 15, 16, 20, 21] to
describe the device.

The domain decomposition type methods have the idea of discretizing the kinetic
equation in the rarefied regime (where δ is big) and the drift-diffusion equation in
the diffusive regime (where δ � 1). Such methods generally face the difficulty of
determining the locations and the coupling conditions of the interfaces. The AP
schemes, on the other hand, solve in the whole computational domain the kinetic
equations and hence avoid the problems of interfaces. Specifically, as summarized
in [11], an AP scheme possesses the discrete analogy of the continuous asymptotic
limit when δ → 0+ even with coarse grids ∆t, ∆x� δ2 (where ∆t is the time step
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and ∆x is the space step). A scheme that allows the use of coarse grids should be
AP. For kinetic equation with a diffusive scaling, the previous AP schemes need
∆t = O(∆x2) due to the explicit convection term [5, 11, 14, 15, 16, 20, 21] and
typically have the following features [15]:

• The numerical stability is independent of δ. Even in the worst case, it is
merely restricted to the parabolic condition ∆t ∼ O(∆x2).
• Given ∆t and ∆x, the scheme becomes a good explicit solver for the limiting

drift-diffusion equation when δ → 0+.
• The collision term, though implicit, can be implemented explicitly.

In this paper, we are interested in deriving the implicit AP schemes for the linear
semiconductor Boltzmann equation with a diffusive scaling, which improve the first
two features above. Specifically, these schemes allow ∆t = O(∆x) instead of ∆t =
O(∆x2) even in the diffusive regime. Moreover, they are good implicit solvers for
the limiting drift-diffusion equation as δ → 0+ without the electric field, i.e., ∆t
can be arbitrary for stability. The constructions are based on the BGK-penalty
method and a suitable implicit approximation to the convection terms, which have
been decoupled through splitting a stiff relaxation step from a stiff convection step.
The BGK-penalty method, having the effect of solving the implicit complicated
collision term explicitly, was first introduced by Filbet and Jin [7] for a class of
hyperbolic system with stiff relaxation source term and the classical Boltzmann
equation. The method only requires that the source term has the unique and stable
local equilibrium state, and has been applied to the Boltzmann type equations with
either the hydrodynamic limit [6, 10, 17] or the diffusive limit [5]. The implicit
scheme in the convection step gives the banded matrix easy to invert. Additionally,
the velocity discretization is done with the moment method, which has been proved
to be stable and convergent in [24].

The paper is arranged as follows. In the next section, we introduce some ba-
sic facts about the linear semiconductor Boltzmann equation and its drift-diffusion
limit. There we generalize δ to δ = δ(~x) ∈ C1(Ω), and rewrite the model equa-
tion into an equivalent system with respect to the even and odd parities as was
done in [14, 16]. The schemes in this paper are actually based on this system.
Moreover, the boundary conditions are simply assumed to be periodic. In section
3, we consider one space dimension and derive the implicit AP schemes with the
uniform and staggered grids, respectively. For the sake of simplification, we denote
the scheme using the uniform grids with IMUG and the other using the staggered
grids with IMSG. To construct IMUG and IMSG, we split the system in a suitable
way to obtain a stiff relaxation step and a stiff convection step. In the relaxation
step, we handle the complicated nonlocal anisotropic collision operator with the
BGK-penalty method, which allows the implicit scheme in this step implemented
explicitly. The convection step is discretized by a suitable implicit approximation
to the convection term, which gives a banded matrix easy to invert and meanwhile
allows ∆t = O(∆x) rather than ∆t = O(∆x2) as in previous approaches. By a com-
parison, IMSG helps to minimize the bandwith of the matrix in the convection step,
while, IMUG has the benefit of easy generalization to the higher space dimension.
Through the von-Neumman analysis, IMUG and IMSG are unconditionally stable
for the Goldstein-Taylor model. Furthermore, the heuristic discussions suggest that
both the one space dimensional schemes are consistent implicit discretiztations of
drift-diffusion equation in the asymptotic sense. In section 4 where the electric
potential is absent, we extend IMUG to two space dimension and discuss its as-
ymptotic property heuristically. In section 5, the moment method for the velocity


