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ERROR ESTIMATES OF THE CRANK-NICOLSON SCHEME

FOR SOLVING BACKWARD STOCHASTIC DIFFERENTIAL

EQUATIONS

WEIDONG ZHAO, YANG LI AND LILI JU

Abstract. In this paper, we study error estimates of a special θ-scheme – the Crank-Nicolson
scheme proposed in [25] for solving the backward stochastic differential equation with a general
generator, −dyt = f(t, yt, zt)dt − ztdWt. We rigorously prove that under some reasonable regu-
larity conditions on ϕ and f , this scheme is second-order accurate for solving both yt and zt when
the errors are measured in the Lp (p ≥ 1) norm.
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1. Introduction

Let (Ω,F , P ) be a probability space, T > 0 a finite time, F = (Ft)0≤t≤T a
filtration satisfying the usual conditions. Let (Ω,F ,F, P ) be a complete, filtered
probability space on which a standard d-dimensional Brownian motionWt is defined
and F0 contains all the P-null sets of F . Let L2 = L2

F(0, T ) be the set of all
Ft-adapted and mean-square-integrable vector/matrix processes. We consider the
backward stochastic differential equation (BSDE)

(1.1) −dyt = f(t, yt, zt)dt− ztdWt, ∀ t ∈ [0, T ),

with the terminal condition
yT = ξ,

where the generator f = f(t, yt, zt) is a vector function valued in Rm and is Ft-
adapted for each (x, y), and the terminal variable ξ ∈ L2 is FT measurable. Rewrit-
ing the BSDE (1.1) in the integral form gives us

(1.2) yt = ξ +

∫ T

t

f(s, ys, zs) ds−
∫ T

t

zs dWs, ∀ t ∈ [0, T ).

We note that the second integral term on the right-hand side of (1.2) is an Itô-type
integral. A process (yt, zt): [0, T ] × Ω → Rm × Rm×d is called an L2-solution of
the BSDE (1.2) if, in the probability space (Ω,F , ,P ), it is {Ft}-adapted, square
integrable, and satisfies the integral equation (1.2) [16].

In 1990, Pardoux and Peng first proved in [16] the existence and uniqueness
of the solution of general nonlinear BSDEs (i.e, f is nonlinear), and later in [17],
obtained some relations between BSDEs and stochastic partial differential equations
(SPDEs). Since then, the theory of BSDEs has been extensively studied by many
researchers and BSDEs have found applications in many fields, such as finance, risk
measure, stochastic control, and etc.. Peng obtained the relation between BSDEs
and parabolic PDEs in [19], and then the generalized stochastic maximum principle
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and the dynamic programming principle for stochastic control problems based on
BSDEs in [18, 21]. The nonlinear g−expectation via a particular nonlinear BSDE
was introduced in [20], and in [7] it was found that a dynamic coherent risk measure
can be represented by a properly defined g-expectation. Thus, it is very important
and useful to study solutions of BSDEs.

In this paper, we consider the case of ξ = ϕ(WT ), and assume that the BSDE
(1.2) has a unique solution (yt, zt). It was shown in [19] that the solution (yt, zt) of
(1.2) can be represented as

(1.3) yt = u(t,Wt), zt = ∇xu(t,Wt), ∀t ∈ [0, T ),

where u(t, x) is the solution of the following parabolic partial differential equation

(1.4)
∂u

∂t
+

1

2

d
∑

i=1

∂2u

∂x2i
+ f(t, u,∇xu) = 0,

with the terminal condition u(T, x) = ϕ(x), and ∇xu is the gradient of u with
respect to the spacial variable x. The smoothness of u clearly depends on φ and f .

It is well-known that it is often difficult to obtain analytic solutions of BSDEs,
so that computing their approximate solutions becomes highly desired. Based on
the relation between the BSDEs and the corresponding parabolic PDEs, some nu-
merical algorithms were proposed to solve BSDEs [3, 11, 12, 13, 14, 15, 19, 24], and
furthermore, a four step algorithm was proposed in [10] to solve a class of more
general equations called forward-backward stochastic differential equations (FBS-
DEs). In [25], a family of θ-schemes were proposed for solving general BSDEs. In
particular, a special case of the θ-scheme – the Crank-Nicolson (C-N) scheme was
numerically demonstrated to be second-order accurate. This accuracy result was
theoretically proven in [22, 26] for the simplified case that the generator function f
is independent of zt in (1.2), however, the proof for the cases of general generators
remains open till now. A family of multi-step schemes were recently developed in
[27] based on the Lagrange interpolation and the Gauss-Hermite quadratures. Ac-
curacies of these multi-step schemes were numerically shown to be of high order for
solving the BSDE (1.2), but again the result was only theoretically confirmed for
BSDEs with a generator f independent of zt. There are also some other numerical
methods for solving BSDEs (or FBSDEs), which were proposed based on directly
discretizing BSDEs or FBSDEs, see [1, 2, 4, 5, 8, 9, 21, 23, 24] and references cited
therein.

The aim of this paper is to study error estimates of the special θ scheme – the
Crank-Nicolson scheme for solving the general BSDE (1.2) with terminal condition
ξ = ϕ(WT ). For the purpose of simple representations, let us first introduce the
following notations:

• ‖X‖Lp (p ≥ 1): the Lp-norm for X ∈ Lp defined by E[|X |p] 1p .
• Cl,k,k

b : the set of continuously differential functions ψ : [0, T ] × Rd × Rm×d →
R with uniformly bounded partial derivatives ∂l1t ψ and ∂k1

y ∂k2

z ψ for l1 ≤ l and
k1 + k2 ≤ k.
• Cl,k

b : the set of functions ψ : (t, x) ∈ [0, T ] × Rd → R with uniformly bounded

partial derivatives ∂l1t ∂
k1
x ψ for l1 ≤ l and k1 ≤ k.

• Ck
b : the set of functions ψ : x ∈ Rd → R with uniformly bounded partial

derivatives ∂k1
x ψ for k1 ≤ k.

• F t,x
s (t ≤ s ≤ T ): the σ-field generated by the Brownian motion {x+Wr−Wt, t ≤

r ≤ s} starting from the time-space point (t, x). Let F t,x = F t,x
T .

• E[X ]: the mathematical expectation of the random variable X .


