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ON CONVERGENCE OF THE STREAMLINE DIFFUSION AND

DISCONTINUOUS GALERKIN METHODS FOR THE

MULTI-DIMENSIONAL FERMI PENCIL BEAM EQUATION

MOHAMMAD ASADZADEH AND EHSAN KAZEMI

Abstract. We derive error estimates in the L2 norms, for the streamline diffusion (SD) and
discontinuous Galerkin (DG) finite element methods for steady state, energy dependent, Fermi
equation in three space dimensions. These estimates yield optimal convergence rates due to the
maximal available regularity of the exact solution. Here our focus is on theoretical aspects of the
h and hp approximations in both SD and DG settings.
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1. Introduction

We study approximate solutions for the three-dimensional Fermi equation using
streamline diffusion (SD) and discontinuous Galerkin (DG) finite element methods.
We prove stability estimates and derive optimal convergence rates for the current
function. This work extends the results in [2]-[3] to the multidimensional case, and
includes the hp approach. The physical problem has diverse applications in, e.g.
astrophysics, material science, electron microscopy, radiation therapy, etc. We shall
consider a pencil beam of particles normally incident on a slab of finite thickness,
entering the slab at a single point, e.g. (0, 0, 0), in the direction of positive x-axis.

Fermi equation is a convection-diffusion equation, obtained as an asymptotic
limit of the Fokker-Planck equation as the transport cross-section (σtr) gets smaller,
see [7]. The equation is degenerate in both convection and diffusion in the sense
that drift and diffusion are taking place in, physically, different domains, and the
problem is convection dominated. Further, the associated boundary conditions are
in the form of product of δ functions, which are not suitable for L2-estimates.
Therefore, we consider model problems with data smoother than Dirac δ-function.

Fermi equation has closed form solutions for σtr being a constant or a function
of only x. In the present setting the direction of penetration of the beam, x, may
also be interpreted as the direction of a hypothetic time variable.

The SD-method is obtained modifying the weak form by adding a multiple of
the ”drift-terms” in the equation to the test function. This yields artificial diffusion
added only in the streamlines direction (motivating for the name: the streamline

diffusion method ) which improves stability in the characteristic direction so that
internal layers are not smeared out while the added diffusion removes oscillations
near boundary layers. The oscillations merge from the lack of stability of standard
Galerkin for convection dominated problems, see, e.g. [14]. While SD may have dis-
continuities in x-direction only, the DG method allows jump discontinuities across
interelement boundaries in order to count for the local effects. We study both h
and hp versions of SD and DG methods. A semi-streamline diffusion for Fermi
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equation has been implemented in [3]. The hp version is considered in a general
setting for a Vlasov-Poisson-Fokker-Planck system in [5].

An outline of this paper is as follows: In Section 2, we introduce the model
problem. Section 3 is devoted to the stability estimates and convergence analysis for
the h and hp streamline diffusion approximations of the Fermi equation. Section 4
is the discontinuous Galerkin counterpart of Section 3, counting for local properties.

2. Model Problem

We consider a model problem for three dimensional Fermi equation on a bounded
polygonal domains Ωx ⊂ R

3, x = (x, y, z) =: (x, x⊥), with velocities v ∈ Ωv ⊂ R
2:

(2.1)





∂f
∂x + v · ∇⊥f = σtr

2 (∆vf), in (0, L]× Ω =: QL,
f(0, x⊥, v) = f0(x⊥, v), in Ω = Ωx⊥

× Ωv,
f(x, x⊥, v) = 0, in (0, L]× ([Γ−

v × Ωv] ∪ [Ωx⊥
× ∂Ωv]),

where f0 ∈ L2(Ω), and for each v ∈ Ωv, the outflow boundary is given by

(2.2) Γ−
v = {x⊥ ∈ ∂Ωx⊥

: n(x⊥).v < 0}.
Here Ω⊥ = {(y, z)}, n(x⊥) is the outward unit normal to ∂Ωx⊥

at the point x⊥ =
(y, z) ∈ ∂Ωx⊥

, v = (v1, v2), ∇⊥ = ( ∂
∂y ,

∂
∂z ) and σtr = σtr(x, y, z).

2.1. Notations and preliminaries. Let T x⊥

h = {τx⊥
} and T v

h = {τv} be finite
element subdivisions of Ωx⊥

and Ωv, into the elements τx⊥ and τv, respectively.
Thus, Th = T x⊥

h × T v
h will be a subdivision of Ω = Ωx⊥

× Ωv with elements
{τx⊥

× τv} = {τ}. Consider a partition Th : 0 = x0 < x1 < . . . < xM = L of
the interval I = (0, L] into subintervals Im = (xm−1, xm], m = 1, ...,M , and let Ch
be the corresponding subdivision of QL := (0, L] × Ω into elements K = Im × τ
with the mesh size hK = diam K. We assume that each K ∈ Ch is the image
under a family of bijective affine maps {FK} of a fixed standard element K̂ into

K, where K̂ is either the open unit simplex or the open unit hypercube in R
5 (in

the hp-analysis, K̂ is the open unit hypercube in R
5). Let Pp(K) be the set of all

polynomials of degree ≤ p on K; in x, x⊥ and v, and define the finite element space

(2.3) Vh = {g ∈ H̃0 : g ◦ FK ∈ Pp(K̂); ∀K ∈ Ch}, where

(2.4) H̃0 =
M∏

m=1

H1
0 (Sm), Sk = Ik × Ω, k = 1, · · · ,M, with

(2.5) H1
0 (Sm) = {g ∈ H1(Sm) : g ≡ 0 on ∂Ωv}.

For piecewise polynomials wi defined on the triangulation C′
h = {K} with C′

h ⊂ Ch
and for Di being some differential operators, we use the notation,

(2.6)
(D1w1, D2w2)Q′ =

∑

K∈C′

h

(D1w1, D2w2)K , Q′ =
⋃

K∈C′

h

K,

where (., .)Q is the L2(Q) scalar product and ‖.‖Q is the corresponding L2(Q)-norm.
Further, for m = 1, 2, . . . ,M , β = (v,0), n = (nx⊥

,nv) and with Γ = ∂(Ωx⊥
×Ωv),

(2.7)

(f, g)m = (f, g)Sm, ‖g‖2m = (g, g)m,
〈f, g〉m = (f(xm, ., .), g(xm, ., .))Ω, |g|2m = 〈g, g〉m,
〈f, g〉Γ− =

∫
Γ− fg(β · n)ds, 〈f, g〉Γ−

m
=
∫
Im

〈f, g〉Γ−ds,

〈f, g〉Γ−

I
=
∫
I 〈f, g〉Γ−ds, Γ− = {(x⊥, v) ∈ Γ : β · n < 0},


