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UNIFORM CONVERGENCE OF A COUPLED METHOD FOR

CONVECTION-DIFFUSION PROBLEMS IN 2-D SHISHKIN

MESH

PENG ZHU, ZIQING XIE∗, AND SHUZI ZHOU

Abstract. In this paper, we introduce a coupled approach of local discontinuous Galerkin (LDG)
and continuous finite element method (CFEM) for solving singularly perturbed convection-diffusion
problems. When the coupled continuous-discontinuous linear FEM is used under the Shishkin
mesh, a uniform convergence rate O(N−1 ln N) in an associated norm is established, where N is
the number of elements. Numerical experiments complement the theoretical results. Moreover, a
uniform convergence rate O(N−2) in L

2 norm, is observed numerically on the Shishkin mesh.
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1. Introduction

In recent years, the numerical solutions of singularly perturbed boundary value
problems have been received much attention and already studied in many papers
and books, see for instance [6, 9, 11, 12]. One of the difficulties in numerically com-
puting the solution of singularly perturbed problems lays in the so-called boundary
layer behavior, i.e., the solution varies very rapidly in a very thin layer near the
boundary. Traditional methods such as finite element and finite difference method-
s, do not work well for these problems as they often produce oscillatory solutions
which are inaccurate if the perturbed parameter ǫ is small. When ǫ approaches ze-
ro, the problem changes from an elliptic equation to a hyperbolic one. Inspired by
the great success of the discontinuous Galerkin (DG) method in solving hyperbolic
equations, Cockburn and Shu [4], Celiker and Cockburn [3], Xie et al. [13, 14, 15]
and Zhang et al. [19] adopted the local discontinuous Galerkin (LDG) method to
solve convection-diffusion equations and analyzed the corresponding convergence
properties. On the other hand, nonsymmetric discontinuous Galerkin method with
interior penalty (the NIPG method), originally designed for elliptic equations, is
analyzed by Zarin and Roos [16] for convection-diffusion problems with parabolic
layers.

A disadvantage of DG method is that it produces more degrees of freedom than
the continuous finite element method (CFEM). With this motivation, our work is to
derive a coupled approach of LDG and CFEM and analyze the uniform convergence
in a DG-norm under Shishkin mesh for singularly perturbed convection diffusion
problems. The basic idea is to decompose the domain into coarse and fine part and
the latter is used to simulate the boundary layer. Then the CFEM using linear
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elements is adopted in the fine part where the mesh size is comparable with ǫ, and
LDG method is used in the coarse part for its stabilization.

A coupled LDG-CFEM approach has also been studied by Perugia and Schötzau
[8] for the modeling of elliptic problems arising in electromagnetics. Roos and Zarin
[10], Zarin [17] analyzed the NIPG-CFEM coupled method on Shishkin mesh for
convection-diffusion problems with exponentially layers or characteristic layers. In
this paper, the coupled LDGmethod is used for the singularly perturbed convection-
diffusion equation for the first time to our knowledge. Moreover, distinguished from
the general approaches for proving uniform convergence of numerical methods for
singularly perturbed problem on layer-adapted meshes, in which solution decom-
position is usually necessary, our analysis is based on the uniform error estimates
for the interpolation under the Shishkin mesh, which can be reduced by the priori
estimate of the solution, i.e.,

∣∣∣∣
∂i+ju(x, y)

∂ xi∂ yj
(x, y)

∣∣∣∣ ≤ C
(
1 + ǫ−ie−β1(1−x)/ǫ

)
×
(
1 + ǫ−je−β2(1−y)/ǫ

)
,

for i, j satisfying 0 ≤ i+ j ≤ 2. Our method can be generalized to all DG methods
belong to the unify framework in [1], including the NIPG method.

The paper is organized as follows. In Section 2, we introduce the coupled LDG
and CFEM for the singularly perturbed problems. Then stability and error analysis
of the coupled method on Shishkin mesh is given in Section 3. The implementation
of our coupled method on Shishkin mesh is presented in Section 4. It aims to
validate our theoretical results. Furthermore, the uniform convergence rateO(N−2)
in L2 norm is observed numerically. This phenomenon is not found in [10] and [17].

In the sequel, with C we shall denote a generic positive constant independent of
the perturbation parameter ǫ and mesh size.

2. Coupling the LDG and CFEM

Consider the following two-dimensional convection-diffusion problem

(2.1)

{
−ǫ∆u+ b · ∇u+ cu = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

where 0 < ǫ ≪ 1 is a small positive parameter, b, c, and f are sufficiently smooth
functions with the following properties

b(x, y) = (b1(x, y), b2(x, y)) ≥ (β1, β2) > (0, 0), c(x, y) ≥ 0, ∀(x, y) ∈ Ω̄,

c20(x, y) ≡ (c− 1
2∇ · b)(x, y) ≥ γ0 > 0, ∀(x, y) ∈ Ω̄,(2.2)

f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0,

for some constants β1, β2 and γ0. With the assumptions above, it is well-known that
there exists a solution u of (2.1) that in general exhibits an exponentially boundary
layer near x = 1 and y = 1.

The Shishkin Mesh. Define the transition parameter

τx = min

(
1

2
,
κ

β1
ǫ lnN

)
, τy = min

(
1

2
,
κ

β2
ǫ lnN

)
,

with κ ≥ 2 and divide Ω into four sub-domains

Ω0 = (0, 1− τx)× (0, 1− τy), Ωx = (1− τx, 1)× (0, 1− τy),

Ωy = (0, 1− τx)× (1− τy, 1), Ωxy = (1 − τx, 1)× (1− τy, 1).


