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ERROR ANALYSIS OF LINEARIZED SEMI-IMPLICIT

GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR

PARABOLIC EQUATIONS

BUYANG LI AND WEIWEI SUN

Abstract. This paper is concerned with the time-step condition of commonly-used linearized
semi-implicit schemes for nonlinear parabolic PDEs with Galerkin finite element approximations.
In particular, we study the time-dependent nonlinear Joule heating equations. We present optimal
error estimates of the semi-implicit Euler scheme in both the L2 norm and the H1 norm without
any time-step restriction. Theoretical analysis is based on a new splitting of error function and
precise analysis of a corresponding time-discrete system. The method used in this paper is appli-
cable for more general nonlinear parabolic systems and many other linearized (semi)-implicit time
discretizations for which previous works often require certain restriction on the time-step size τ .
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1. Introduction

In the last several decades, numerous effort has been devoted to the development
of efficient numerical schemes for nonlinear parabolic PDEs arising from a variety
of physical applications. A key issue to those schemes is the time-step condition.
Usually, fully implicit schemes are unconditionally stable. However, at each time
step, one has to solve a system of nonlinear equations. An explicit scheme is
much easy in computation. But it suffers the severely restricted time-step size for
convergence. A popular and widely-used approach is a linearized (semi)-implicit
scheme, such as linearized semi-implicit Euler scheme. At each time step, the
scheme only requires the solution of a linear system. To study the error estimate of
linearized (semi)-implicit schemes, the boundedness of numerical solution (or error
function) in L∞ norm or a stronger norm is often required. If a priori estimate
for numerical solution in such a norm cannot be obtained, one may employ the
induction method with inverse inequality to bound the numerical solution, such as

(1.1) ‖Rhu(·, tn)− Un
h ‖L∞ ≤ Ch−d/2‖Rhu(·, tn)− Un

h ‖L2 ≤ Ch−d/2(τp + hr+1),

where u(·, tn) and Un
h are the exact solution and numerical solution, respectively,

Rh is some projection operator and d is the dimension. The above inequality, how-
ever, results in a time-step restriction, particularly for problems in three spatial
dimensions. Such a technique has been widely used in the error analysis for many
different nonlinear parabolic PDEs, e.g., see [1, 16, 18, 20, 21] for Navier-Stokes
equations, [2, 11, 36] for nonlinear Joule heating problems, [15, 25, 27] for porous
media flows, [7, 12, 13, 28] for viscoelastic fluid flow, [22, 35] for KdV equations
and [10, 29] for some other equations. In all these works, error estimates were
established under certain time-step restrictions. We believe that these time-step
restrictions may not be necessary in most cases. In this paper, we only focus our
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attention to a time-dependent and nonlinear Joule heating system by a linearized
semi-implicit scheme. However, our approach is applicable for more general non-
linear parabolic PDEs and many other time discretizations to obtain optimal error
estimates unconditionally.

The time-dependent nonlinear Joule heating system is defined by

∂u

∂t
−∆u = σ(u)|∇φ|2,(1.2)

−∇ · (σ(u)∇φ) = 0,(1.3)

for x ∈ Ω and t ∈ [0, T ], where Ω is a bounded smooth domain in R
d, d = 2, 3. The

initial and boundary conditions are given by

u(x, t) = 0, φ(x, t) = g(x, t) for x ∈ ∂Ω, t ∈ [0, T ],

u(x, 0) = u0(x) for x ∈ Ω.
(1.4)

The nonlinear system above describes the model of electric heating of a con-
ducting body, where u is the temperature, φ is the electric potential, and σ is the
temperature-dependent electric conductivity. Following the previous works [11, 36],
we assume that σ ∈ C1(R) and

κ ≤ σ(s) ≤ K,(1.5)

for some positive constants κ and K.
Theoretical analysis for the Joule heating system was done by several authors [3,

5, 8, 34, 31, 32, 33]. Among these works, Yuan [33] proved existence and uniqueness
of a Cα solution in three-dimensional space. Based on this result, further regularity
can be derived with suitable assumption on the initial and boundary conditions.
Numerical methods and analysis for the Joule heating system can be found in
[2, 4, 11, 30, 36, 37, 38]. For the system in two-dimensional space, optimal L2 error
estimate of a mixed finite element method with the linearized semi-implicit Euler
scheme was obtained in [36] under a weak time-step condition. Error analysis for
the three-dimensional model was given in [11], in which the linearized semi-implicit
Euler scheme with a linear Galerkin FEM was used. An optimal L2-error estimate
was presented under the time step restriction τ ≤ O(h1/2). A more general time
discretization with higher-order finite element approximations was studied in [2].
An optimal L2-norm error estimate was given under the conditions τ ≤ O(h3/2p)
and r ≥ 2 where p is the order of the discrete scheme in time direction and r is the
degree of piecewise polynomial approximations used. No optimal error estimates
in H1-norm have been obtained.

The main idea of this paper is a splitting of the numerical error into the temporal
direction and the spatial direction by introducing a corresponding time-discrete
parabolic system (or elliptic system). Error bounds of the Galerkin finite element
methods for the time-discrete parabolic equations in certain norm is dependent only
upon the spatial mesh size h and independent of the time-step size τ . If a suitable
regularity of the solution of the time-discrete equations can be proved, numerical
solution in the L∞ norm (or stronger norm) is bounded unconditionally by the
induction assumption

(1.6) ‖RhU
n − Un

h ‖L∞ ≤ Ch−d/2‖RhU
n − Un

h ‖L2 ≤ Ch−d/2hr+1

where Un is the solution of the time-discrete equations. With the boundedness,
optimal error estimates can be established for the fully discrete scheme without
any time-step restriction. In this paper, we analyze the linearized (semi-implicit)


