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UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE

ELEMENT METHODS FOR THE STOKES EQUATIONS

JUNPING WANG, YANQIU WANG, AND XIU YE

Abstract. This paper is concerned with residual type a posteriori error estimators for finite
element methods for the Stokes equations. In particular, the authors established a unified ap-
proach for deriving and analyzing a posteriori error estimators for velocity-pressure based finite
element formulations for the Stokes equations. A general a posteriori error estimator was pre-
sented with a unified mathematical analysis for the general finite element formulation that covers
conforming, non-conforming, and discontinuous Galerkin methods as examples. The key behind
the mathematical analysis is the use of a lifting operator from discontinuous finite element spaces
to continuous ones for which all the terms involving jumps at interior edges disappear.
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1. Introduction

A posteriori error estimator refers to a computable formula that offers a measure
for judging the reliability and efficiency of a particular numerical scheme employed
for approximating the solution of partial differential equations or alike. With a
mathematically justified a posteriori error estimator, one would be able to generate
a mesh that is tailored at reducing computational errors at places of great need.
This process is commonly known as adaptive mesh refinement which has become
a useful and important tool in today’s scientific and engineering computing. The
goal of this paper is to offer a systematic framework for developing and analyzing a
posteriori error estimators for finite element methods for model Stokes equations.

This paper is concerned with residual type a posteriori error estimators. In other
words, the computable formula for judging the efficiency and reliability of numerical
schemes shall be given by functions of residuals. Along this avenue, several fine
results have been developed for finite element methods for the Stokes equations.
For conforming finite element methods, some a posteriori error estimators have
been derived for mini-elements by Verfurth [21] and Bank-Welfert [4]. Ainsworth-
Oden [3] and Nobile [18] have considered more general conforming finite elements
in their study. For nonconforming finite elements, a posteriori error estimation for
the Crouzeix-Raviart element [8] has been developed by several researchers such
as Verfurth [22], Dari-Durán-Padra [9] and Doerfler-Ainsworth [10]. Carstensen,
Gudi, and Jensen [5] proposed and analyzed an a posteriori error estimator for
discontinuous Galerkin methods by using a stress-velocity-pressure formulation for
the Stokes equations. Kay and Silvester [16] established a posteriori error estimation
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for the stabilized finite element formulation. The recovery based a posteriori error
estimate for the Stokes equations is investigated in [12].

In both [9] and [10], the analysis for their a posteriori error estimators was based
on a Helmholtz decomposition for decomposing the Crouzeix-Raviart element into
two parts: an exactly divergence-free part and the second as its orthogonal com-
plement. While the Helmholtz decomposition offers an applaudable approach for
analyzing the efficiency and reliability of a posteriori error estimators for the Stokes
equations, the method has difficulty in being extended to finite element approxima-
tions arising from discontinuous Galerkin methods. The main difficulty comes from
the fact that the approximate velocity field from the discontinuous finite element
methods is not divergence-free in the classical sense. Therefore, other analytical
techniques have been developed for discontinuous finite elements; but most of them
requires special and unnecessary properties about the finite element mesh. For
example, Houston, Schötzau and Wihler [14] have developed an a posteriori er-
ror analysis for the discontinuous Qk − Qk−1 element on partitions consisting of
parallelograms only.

In this paper, we establish a unified approach for deriving and analyzing a pos-
teriori error estimators of residual type for velocity-pressure based formulations
of the Stokes equations. In particular, we shall develop a general finite element
formulation that covers conforming, non-conforming, and discontinuous Galerkin
methods as examples. Then, a general a posteriori error estimator shall be present-
ed with a unified mathematical analysis. The key behind the analysis is the use of
a lifting operator from discontinuous finite element spaces to continuous ones for
which all the terms involving jumps at interior edges disappear. A similar lifting
operator was employed by Karakashian and Pascal [15] for analyzing a posteriori
error estimates for a discontinuous Galerkin approximation to second order elliptic
equations.

The paper is organized as follows. In Section 2, a model Stokes problem and
some notations are introduced. In Section 3, we shall first present a general finite
element formulation for the Stokes equations, and then illustrate how most existing
conforming, nonconforming, and discontinuous Galerkin methods be represented by
the general framework. In Section 4, we establish an analytical tool for analyzing
the general a posteriori error estimator of residual type. Finally in Section 5, we
present some numerical results to confirm the theory developed in previous sections.

2. Preliminaries and notations

Let Ω be an open bounded domain in Rd, d = 2, 3. Denote by ∂Ω the boundary
of Ω. The model problem seeks a velocity function u and a pressure function p

satisfying

−∆u+∇p = f in Ω,(1)

∇ · u = 0 in Ω,(2)

u = 0 on ∂Ω,(3)

where ∆, ∇, and ∇· denote the Laplacian, gradient, and divergence operators,
respectively, and f is the external volumetric force acting on the fluid.

For simplicity, the algorithm and its analysis will be presented for the model
Stokes problem (1)-(3) only in two-dimensional spaces (i.e.; d = 2) with polygonal
domains. An extension to the Stokes problem in three dimensions can be made
formally for general polyhedral domains.


