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APPROXIMATION OF THE LONG-TERM DYNAMICS OF THE

DYNAMICAL SYSTEM GENERATED BY THE

TWO-DIMENSIONAL THERMOHYDRAULICS EQUATIONS
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(Communicated by Roger Temam)

Abstract. Pursuing our work in [18], [17], [20], [5], we consider in this article the two-dimensional
thermohydraulics equations. We discretize these equations in time using the implicit Euler scheme
and we prove that the global attractors generated by the numerical scheme converge to the global
attractor of the continuous system as the time-step approaches zero.
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1. Introduction

In this article we discretize the two-dimensional thermohydraulics equations in
time using the implicit Euler scheme, and we show that global attractors generated
by the numerical scheme converge to the global attractor of the continuous system
as the time-step approaches zero. In order to do this, we first prove that the scheme
is H1-uniformly stable in time (see Section 4) and then we show that the long-term
dynamics of the continuous system can be approximated by the discrete attractors
of the dynamical systems generated by the numerical scheme (see Section 5).

In the case of the Navier–Stokes equations with Dirichlet boundary conditions,
the H1-uniform stability of the fully implicit Euler scheme has proven to be rather
challenging. However, using techniques based on the classical and uniform discrete
Gronwall lemmas, we have been able to show the H1-stability for all time of the
implicit Euler scheme for the Navier–Stokes equations with Dirichlet boundary
conditions (see [20]). The H2-stability has also been established. More precisely,
the H2-stability has first been proven in the simpler case of space periodic boundary
conditions (see [17]), and then extended to Dirichlet boundary conditions (see [18]);
the magnetohydrodynamics equations are also considered in [18].

Our first objective in this article is to extend the H1-uniform stability proven
in [20] for the Navier–Stokes equations with Dirichlet boundary conditions, to the
thermohydraulics equations. In order to do so, we divide our proof into three step-
s. First, we prove the L2-uniform stability of both the discrete temperature θn

and the discrete velocity vn (see Lemma 3.2 and Lemma 3.3 below). Then, using
techniques based on the classical and uniform discrete Gronwall lemmas, we derive
the H1-uniform stability of vn (see Proposition 4.1 below), which we will use in
Subsection 4.2 in order to establish the H1-uniform stability of θn (see Proposi-
tion 4.2 below). Besides the intrinsec interest of considering the thermohydraulics
equations, the new technical difficulties which appear here are related to the spe-
cific treatment of the temperature with the necessary utilization of the maximum
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principle. Furthermore, we have simplified some steps of the proof as compared to
[20].

Our second objective in this article is to employ the technique developed in [5] to
prove that the global attractors generated by the fully implicit Euler scheme con-
verge to the global attractor of the continuous system as the time-step approaches
zero. When discretizing the two-dimensional thermohydraulics equations in time
using the implicit Euler scheme, one can prove the uniqueness of the solution pro-
vided that the time step is sufficiently small. More precisely, the time restriction
depends on the initial value, and thus one cannot define a single-valued attrac-
tor in the classical sense. This is why we need to use the theory of the so-called
multi-valued attractors, which we briefly recall in Subsection 5.1.

2. The thermohydraulics equations

Let Ω = (0, 1) × (0, 1) be the domain occupied by the fluid and let e2 be the
unit upward vertical vector. The thermohydraulics equations consist of the coupled
system of the equations of fluid and temperature in the Boussinesq approximation
and they read (see, e.g., [6], [15]):

∂v

∂t
+ (v · ∇)v − ν∆v +∇p = e2(T − T1),(2.1)

∂T

∂t
+ (v · ∇)T − κ∆T = 0,(2.2)

div v = 0;(2.3)

here v = (v1, v2) is the velocity, p is the pressure, T is the temperature, T1 is the
temperature at the top boundary, x2 = 1, and ν, κ are positive constants. We
supplement these equations with the initial conditions

v(x, 0) = v0(x),(2.4)

T (x, 0) = T 0(x),(2.5)

where v0 : Ω → R
2, T 0 : Ω → R are given, and with the boundary conditions

v = 0 at x2 = 0 and x2 = 1,(2.6)

T = T0 = T1 + 1 at x2 = 0 and T = T1 at x2 = 1,(2.7)

and

p, v, T and the first derivatives of v and T are periodic

of period 1 in the direction x1,
(2.8)

meaning that φ|x1=0 = φ|x1=1 for the corresponding functions φ.
Letting

(2.9) θ = T − T0 + x2,

and changing p to

(2.10) p−
(

x2 −
x22
2

)

,


