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ON FULLY DISCRETE FINITE ELEMENT SCHEMES FOR

EQUATIONS OF MOTION OF KELVIN-VOIGT FLUIDS
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Abstract. In this paper, we study two fully discrete schemes for the equations of motion arising
in the Kelvin-Voigt model of viscoelastic fluids. Based on a backward Euler method in time and a

finite element method in spatial direction, optimal error estimates which exhibit the exponential
decay property in time are derived. In the later part of this article, a second order two step

backward difference scheme is applied for temporal discretization and again exponential decay in

time for the discrete solution is discussed. Finally, a priori error estimates are derived and results
on numerical experiments conforming theoretical results are established.
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1. Introduction

In this article, we discuss the convergence of the backward Euler method and
the second order backward difference scheme for the following system of equations
of motion arising in the Kelvin-Voigt fluids (see [19]):

∂u

∂t
+ u · ∇u− κ∆ut − ν∆u +∇p = f(x, t), x ∈ Ω, t > 0,(1.1)

and incompressibility condition

∇ · u = 0, x ∈ Ω, t > 0,(1.2)

with initial and boundary conditions

u(x, 0) = u0 in Ω, u = 0 on ∂Ω, t ≥ 0,(1.3)

where, Ω is a bounded domain in IRd (d = 2 or 3) with boundary ∂Ω. Here
u = u(x, t) represents the velocity vector, p = p(x, t) the pressure and ν > 0,
the kinematic coefficient of viscosity. Moreover, the velocity of the fluid, after in-
stantaneous removal of the stress, does not vanish instantaneously but dies out
like exp(κ−1t) (see [19]), where κ is the retardation parameter. For details of the
physical background and its mathematical modeling, we refer to [6]-[7] and [9].
Throughout this paper, we assume that the right hand side function f = 0. In fact,
assuming conservative force, the function f can be absorbed in the pressure term.
Based on the analysis of Ladyzenskaya [17] for the solvability of the Navier Stokes
equations, Oskolkov [18, 19], has proved the global existence of a unique ‘almost’
classical solution in finite time interval for the initial and boundary value problem
(1.1)-(1.3). The investigations on solvability are further continued by him and his
collaborators, see [21] and [22] and they have discussed the existence and unique-
ness results on the entire semiaxis R+ in time.
For the related literature on the time discretization of equations of motion arising
in the viscoelastic model of Oldroyd type see [2], [13], [24] and [26]-[29]. Interest-
ingly, there is hardly any work devoted to the time discretization of (1.1)-(1.3). For
the earlier results on the numerical approximations to the solutions of the problem

Received by the editors April 19, 2012.
2000 Mathematics Subject Classification. 65M60,65M12,65M15,35D05,35D10.

481



482 S. BAJPAI, N. NATARAJ AND A. PANI

(1.1)-(1.3), we refer to [3] and [20]. Under the condition that the solution is asymp-
totically stable as t → ∞, the authors of [20] have established the convergence of
spectral Galerkin approximations for the semi axis t ≥ 0. Recently, Bajpai et al. [3]
have applied finite element methods to discretize the spatial variables and derived
optimal error bounds for the velocity in L∞(L2) as well as L∞(H1)-norms and for
the pressure in L∞(L2)- norm. In [3] and [20], only semidiscrete approximations
for (1.1)-(1.3) are discussed, keeping the time variable continuous. In this article,
we have discussed both backward Euler method and two step backward difference
scheme for the time discretization and have derived optimal error estimates. We
have also discussed briefly, the proof of linearized backward Euler method applied
to (1.1)-(1.3) for time discretization. More precisely, we have

‖u(tn)−Un‖j ≤ Ce−αtn(h2−j + k) j = 0, 1,

and

‖(p(tn)− Pn)‖ ≤ Ce−αtn(h+ k),

where the pair (Un, Pn) is the fully discrete solution of the backward Euler or
linearized backward Euler method.
In the later part of this article, we have proved the following result for a second
order backward difference scheme:

‖u(tn)−Un‖j ≤ Ce−αtn(h2−j + k2) j = 0, 1,

and

‖(p(tn)− Pn)‖ ≤ Ce−αtn(h+ k2−γ),

where the pair (Un, Pn) is the fully discrete solution of the second order backward
difference scheme and

γ =

{
0 if n ≥ 2;

1 if n = 1.

The remaining part of this paper is organized as follows. In Section 2, we discuss the
preliminaries. In Section 3, we derive a priori bounds for the semidiscrete solutions
and present some spatial error estimates required for error analysis. In Section
4, we obtain a priori bounds for the discrete solution and prove the existence and
uniqueness of the discrete solution. In Section 5, we establish the error estimates for
the velocity and pressure of the backward Euler method. Section 6 deals with the
error estimates for velocity and pressure using the second order backward difference
scheme. In Section 7, we provide some numerical results to confirm our theoretical
results.

2. Preliminaries

For the mathematical formulation of (1.1)-(1.3), we denote Rd, (d = 2, 3)-valued
function spaces using boldface letters. That is,

H1
0 = (H1

0 (Ω))d, L2 = (L2(Ω))d and Hm = (Hm(Ω))d,

where L2(Ω) is the space of square integrable functions defined in Ω. The space

L2(Ω) is a Hilbert space endowed with the usual scalar product (φ, ψ) =

∫
Ω

φ(x)ψ(x) dx

and the associated norm ‖φ‖ =

(∫
Ω

|φ(x)|2 dx
)1/2

. Further, Hm(Ω) is the stan-

dard Hilbert Sobolev space of order m ∈ N+ with norm ‖φ‖m =


