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NUMERICAL ANALYSIS OF THE FRACTIONAL

SEVENTH-ORDER KDV EQUATION USING AN IMPLICIT

FULLY DISCRETE LOCAL DISCONTINUOUS GALERKIN

METHOD

LEILEI WEI, YINNIAN HE, AND YAN ZHANG

Abstract. In this paper an implicit fully discrete local discontinuous Galerkin (LDG) finite
element method is applied to solve the time-fractional seventh-order Korteweg-de Vries (sKdV)
equation, which is introduced by replacing the integer-order time derivatives with fractional deriva-
tives. We prove that our scheme is unconditional stable and L2 error estimate for the linear case

with the convergence rate O(hk+1 + (∆t)2 + (∆t)
α
2 h

k+ 1
2 ) through analysis. Extensive numerical

results are provided to demonstrate the performance of the present method.
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1. Introduction

Several researchers in fractional calculus mentioned that derivatives of noninte-
ger order are very effective for the description of many physical phenomena such
as damping laws, and diffusion process [18, 25]. Some fractional partial differ-
ential equations have been solved, such as time-fractional telegraph equation [1],
fractional Fokker-Planck equation [5], space-time fractional Schrödinger equation
[8, 26], fractional order two point boundary value problem [7], the fractional KdV
equation [16], fractional diffusion equation [17, 23], fractional derivative fluid model
[9], fractional KdV-Burgers-Kuramoto equation [21] and so on. Machado et al. [14]
introduced the recent history of fractional calculus, as for the detailed theory and
applications of fractional integrals and derivatives, we can refer to [11, 15, 20] and
the references therein. Solving such fractional partial differential by the robust and
accurate numerical methods has become popular with their frequent appearance in
applied science and engineering.

The KdV type of equations, which were first derived by Korteweg and de Vries
(1895) and used to describe weakly nonlinear shallow water waves, have emerged
as an important class of nonlinear evolution equation and are often used in pratical
applications. The seventh-order KdV (sKdV) equation was first introduced by
Pomeau et. al [19] in order to discuss the structural stability of the KdV equation
under singular perturbation. Some methods [6, 13] have been used to handle the
integer-order equations, however, to the best of our knowledge, the study of the
fractional sKdv equations has not been widespread. In this paper, we consider the
following generalized time-fractional sKdv equation

Dα
t u(x, t) + g(u)x + u3x − u5x + λu7x = 0,

u(x, 0) = u0(x),
(1.1)
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where λ is anonzero constant. 0 < α ≤ 1 is a parameter describing the order of
the fractional time. We do not pay attention to boundary condition in this paper;
hence the solution is considered to be either periodic or compactly supported.

The time fractional derivative in the equation (1.1), uses the Caputo fractional
partial derivative of order α, defined as [18]

Dα
t u(x, t) =

{
1

Γ(1−α)

∫ t

0
∂u(x,s)

∂s
ds

(t−s)α if 0 < α < 1,
∂u(x,t)

∂t
if α = 1,

(1.2)

here Γ(·) is the Gamma function.
The discontinuous Galerkin finite element method is a very attractive method for

partial differential equations because it is naturally formulated for any order of ac-
curacy in each element, flexible and efficient in terms of mesh and shape functions.
The purpose of the present paper is to solve and analyze time-fractional sKdV equa-
tion by introducing an implicit fully discrete local discontinuous Galerkin method.
This development is based on the extensive work on DG for problems founded in
classic calculus [10, 22, 24, 27]. We prove that our scheme is unconditionally stable
and give an error estimate for the linear case.

The remains of this paper are organized as follows. In the next section, we
introduce some basic notations and mathematical preliminaries. Then, in Section
3, we discuss the LDG scheme for the fractional equation (1.1), and prove that
the scheme is unconditionally stable, and the numerical solution is convergent.
Numerical experiments to illustrate the accuracy and capability of the method are
given in Section 4. Finally, in Section 5, concluding remarks are provided.

2. Notations and auxiliary results

2.1. Notations. First, the domain Ω is partitioned into elements Ω =
⋃

j Ij with

a spatial grid a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b. Ij = [xj− 1

2
, xj+ 1

2
], for j = 1, · · ·N .

The cell lengths ∆xj = xj+ 1
2
−xj− 1

2
, 1 ≤ j ≤ N, and h = max

1≤j≤N
∆xj . The solution

of the numerical scheme is denoted by unh which belongs to the finite element space
V k
h :

V k
h = {v : v ∈ P k(Ij), x ∈ Ij , j = 1, 2, · · ·N},

P k(Ij) denotes the set of all polynomials of degree at most k on Ij .
For a function unh ∈ V k

h , We denote the limits at the points {xj+ 1
2
} by

(unh)
±

j+ 1
2

= lim
x→x

±

j+1
2

unh,

(unh)
−

j+ 1
2

and (unh)
+
j+ 1

2

refer to the value of unh at xj+ 1
2
from the left cell Ij and the

right cell Ij+1, respectively. The jump (unh)
+
j+ 1

2

− (unh)
−

j+ 1
2

by [unh]j+ 1
2
. The jump

will be zero for a continuous function.

2.2. Numerical flux. Consider a scalar conservation law given in differential form

(2.1) φt + g(φ)x = 0,

where g(φ) is called the flux function. Numerically, g(φ) should be expressed by a
suitable choice at the interface. For discontinuous Galerkin spatial discretization,
g(φ) is approximated by the numerical form at the discontinuous point xj+ 1

2
. In

this paper, the flux ĝ(φ−, φ+) will be used to denote the numerical flux, which is


