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LOCAL ERROR ESTIMATES OF THE LDG METHOD FOR 1-D

SINGULARLY PERTURBED PROBLEMS

HUIQING ZHU AND ZHIMIN ZHANG

Abstract. In this paper local discontinuous Galerkin method (LDG) was analyzed for solving
1-D convection-diffusion equations with a boundary layer near the outflow boundary. Local error
estimates are established on quasi-uniform meshes with maximum mesh size h. On a subdomain
with O(h ln(1/h)) distance away from the outflow boundary, the L2 error of the approximations to
the solution and its derivative converges at the optimal rate O(hk+1) when polynomials of degree
at most k are used. Numerical experiments illustrate that the rate of convergence is uniformly
valid and sharp. The numerical comparison of the LDG method and the streamline-diffusion finite
element method are also presented.

Key words. Local discontinuous Galerkin method, singularly perturbed, local error estimates.

1. Introduction

We are interested in the convection-diffusion problem

(1.1)
−ǫu′′ + au′ + bu = f in I = (0, 1),

u = 0 on ∂I = {0, 1},
where 0 < ǫ ≪ 1 is the diffusion parameter, a = a(x) ≥ α > 0 accounts for the
convection, and b = b(x) accounts for the reaction term. The function f = f(x) is
a given source term. We assume that α is a constant; a, b, and f are sufficiently
smooth on I.

When ǫ is small, the solution to Problem (1.1) typically has a boundary layer with
width O(ǫ ln 1

ǫ ) at x = 1. The standard finite element method produces numerical
solutions that exhibits nonphysical oscillation on uniform mesh unless the mesh
size is comparable with ǫ. Many techniques have been developed to eliminate
the nonphysical oscillation (c.f. [1, 11, 12, 15, 16]). Among these techniques is
the streamline-diffusion finite element method (SDFEM) proposed in eighties by
Hughes et.al. (c.f. [12]) by adding an appropriate amount of artificial diffusion
in the streamline direction to stabilize the conforming finite element method. The
SDFEM is quite satisfactory for practical situations, but may lead to large artificial
layers near boundaries and discontinuities. There has been many theoretical results
published up to now (c.f. [6, 14, 16]). Another technique is to employ a layer-
adapted mesh based on the a priori knowledge of Problem (1.1), such as Shishkin-
type meshes, Bakhvalov-type meshes (c.f. [15, 16, 20, 21]).

Starting from 1970’s, discontinuous Galerkin methods has been intensively stud-
ied and applied to hyperbolic and convection-dominated elliptic problems with great
success (c.f. [7, 8, 9, 13]). Recently, the superconvergence of the numerical traces
and the L2 convergence of DG methods have been discussed for one-dimensional
convection-diffusion problems (c.f. [4, 5, 18, 19, 21]). It has been reported in the
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numerical experiments of [18] that the error curves of numerical traces didn’t show
any any oscillation even on uniform meshes if mesh size h is comparable with ǫ, or if
ǫ ≪ h is extremely small. It implies that the local discontinuous Galerkin method
(LDG) seems not to produce a large artificial layers as SDFEM did outside the
boundary layer region of Problem (1.1). Motivated by this finding, we are interest-
ed in investigating the LDG method for Problem (1.1) on uniform or quasi-uniform
meshes to see how efficient it could be.

In this work, we proved that the L2 errors of u′ − ǫ−1Q and u − U converge
at the optimal rate O(hk+1) on a subdomain I0 ⊂ I where ∂I0 is O(h ln(1/h))
distance away from the outflow boundary of I, i.e., x = 1. Here (U,Q) denotes the
LDG approximation of (u, ǫu′); h denotes the maximum mesh size; and approxi-
mation space consists of piecewise polynomials of degree at most k. These rates
of convergence are uniformly valid in terms of the singular perturbation parameter
ǫ, as verified by our numerical experiments. The numerical comparison of LDG
and SDFEM are also presented in this paper. The numerical results in Section
4 illustrate that the L2 errors of the LDG approximations to the exact solution
and its derivative on I0 are smaller comparing with the L2 errors of SDFEM on
the same subdomain I0. For a fixed uniform mesh, the subdomain I0 of the LDG
method expands and contains more mesh elements as the parameter ǫ → 0. If
ǫ ≪ h is extremely small, the error curves of numerical traces will not show any
oscillation. Furthermore, numerical results shows that a small artificial layer does
exist for small ǫ if the mesh size h is not very large.

On the other hand, the subdomain I0 of SDFEM expands slower than LDG and
the artificial layer always contains (k+1) lnN mesh elements as ǫ→ 0. Therefore,
its nodal error curves will always show an oscillation near the outflow boundary
x = 1 even if ǫ is extremely small. This finding, then, seems to support the former
view in [18] that the DG method is more ‘local’ than finite element method.

The outline of this article is as follows: In Section 2, we present the LDG dis-
cretization and state our main results, which give some local error estimates. The
proof of the main results is carried out in details in Section 3. In section 4, we
present several numerical experiments testing our theoretical results. We end in
Section 5 with some concluding remarks.

Notations. Throughout this article, the letter C will denote a generic constant
not necessarily the same at each occurrence. It might depend on the coefficient
functions a, b, the right-hand side function f , and the polynomial degree k, but
is independent of the singular perturbation parameter ǫ and the mesh. For any
measurable subdomain D ⊆ I, we use the standard Sobolev spaces L2(D), H1(D),
Hs(D) =W s

2 (D) for some nonnegative integer s.

2. The LDG discretization and main results

In this section, we present the LDG discretization and state our main results.
We begin with partitioning the domain I. If 0 = x0 < x1 < . . . < xN−1 < xN = 1,
we denote by Ih = {Ij = (xj−1, xj), j = 1, 2, · · · , N} a quasi-uniform partition of
domain I, and by hj = xj−xj−1 the length of the j-th element. Let h = max

j=1,··· ,N
hj.

For any j = 1, 2, · · · , N , there exists a constant Cq such that hj ≥ Cqh. Define
v(x±j ) = limδ→0 v(xj ± δ) as in [13]. For each element Ij ∈ Ih, we set its outward

unit normal nIj (xj) = 1 and nIj (xj−1) = −1. We denote vj = v(xj), v
±
j = v(x±j ),

Jv0K = −v+0 and JvN K = v−N , JvjK = v−j nIj (xj) + v+j nIj+1
(xj) = v−j − v+j for

j = 1, · · · , N − 1.


