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UNCONDITIONAL CONVERGENCE OF HIGH-ORDER

EXTRAPOLATIONS OF THE CRANK-NICOLSON, FINITE

ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS

ROSS INGRAM

Abstract. Error estimates for the Crank-Nicolson in time, Finite Element in space (CNFE) dis-
cretization of the Navier-Stokes equations require application of the discrete Gronwall inequality,
which leads to a time-step (∆t) restriction. All known convergence analyses of the fully dis-
crete CNFE with linear extrapolation rely on a similar ∆t-restriction. We show that CNFE with
arbitrary-order extrapolation (denoted CNLE) is convergences optimally in the energy norm with-
out any ∆t-restriction. We prove that CNLE velocity and corresponding discrete time-derivative
converge optimally in l∞(H1) and l2(L2) respectively under the mild condition ∆t ≤ Mh1/4 for

any arbitrary M > 0 (e.g. independent of problem data, h, and ∆t) where h > 0 is the maximum
mesh element diameter. Convergence in these higher order norms is needed to prove convergence
estimates for pressure and the drag/lift force a fluid exerts on an obstacle. Our analysis exploits
the extrapolated convective velocity to avoid any ∆t-restriction for convergence in the energy
norm. However, the coupling between the extrapolated convecting velocity of usual CNLE and
the a priori control of average velocities (characteristic of CN methods) rather than pointwise
velocities (e.g. backward-Euler methods) in l2(H1) is precisely the source of ∆t-restriction for
convergence in higher-order norms.
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1. Introduction

The usual Crank-Nicolson (CN) in time Finite Element (FE) in space discretiza-
tion of the Navier-Stokes (NS) Equations (NSE) denoted by CNFE is well-known to
be unconditionally (energetically) stable. The error analysis of the CNFE method
is based on a discrete Gronwall inequality which introduces a time-step (∆t > 0)
restriction (for convergence, not for stability) of the form

∆t ≤ C(Re, h), e.g. ∆t ≤ O(Re−3) (1)

(see Appendix A for a derivation, Theorem A.1 with e.g. (157)). Here h > 0 is the
maximum mesh element diameter and Re > 0 is the Reynolds number. Condition
(1)(a) implies conditional convergence whereas (1)(b) is a robustness condition and
both are prohibitively restrictive in practice; for example, (1)(b) suggests

Re = 100 (low-to-moderate value) ⇒ ∆t ≤ O(10−6).

Consequently, an important open question regards whether condition (1) is

• an artifact of imperfect mathematical technique, or
• a special feature of the CN time discretization.
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We consider the necessity of a ∆t-restriction in a linear, fully implicit variant of
CNFE obtained by extrapolation of the convecting velocity u: for example, sup-
pressing spatial discretization, given u0, u1, and p1, for each n = 1, 2, . . . find
velocity un+1 and pressure pn+1 satisfying

un+1 − un

∆t
+ (

3

2
un − 1

2
un−1) · ∇un+1 + un

2

−Re−1∆
un+1 + un
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+∇pn+1 + pn

2
=

fn+1 + fn

2
∇ · un+1 = 0.

(2)

Here f is body-force term, and zi := z(x, ti) and ti = i∆t. This method is often
called CNLE and was first studied by Baker [3]. CNLE is linearly implicit, uncon-
ditionally (energetically) stable, and second-order accurate. In this report, we show
that no ∆t-restriction is required for the convergence of CNLE (Proposition 3.1,
Theorem 3.5). In particular,

||error(CNLE)||l∞(L2)∩l2(H1) ≤ C(hk +∆t2), k = degree of FE space

(Theorem 3.5). This result was proved for the semi-discrete case as ∆t → 0 in [10]
and the fully discrete Backward Euler (BE) scheme with Constant Extrapolation
(BECE) in [32]. The analysis depends on

• Gronwall inequality - exploit time-lagged convecting velocity (Section 1.1)
• Estimate (74) - bound convecting velocity in L2 (Section 1.1.1)

Indeed, for extrapolated CN, we apply a discrete Gronwall Lemma without any ∆t-
restriction; for general extrapolations we derive and apply the estimate (74)(b) of
the explicitly skew-symmetric convective term. We explain our strategy for proving
the CNLE error estimate and corresponding difficulties in detail in Section 1.1.

We also prove convergence estimates in higher-order norms. We show that the
CNLE velocity approximation converges optimally in the l∞(H1)-norm and the
corresponding discrete time-derivative of the velocity approximation converges op-
timally in the l2(L2)-norm (Theorems 3.8, 3.10) under a modest ∆t-restriction

∆t ≤ Mh1/4, for any M > 0 (no Re-dependence). (3)

Note that M is completely arbitrary so that (3) only governs the rate at which
∆t → 0 and not the size of ∆t. In particular, restriction (3) is not a typical artifact
of the discrete Gronwall inequality since it does not depend problem data. The
error estimate is obtained by a bootstrap argument that utilizes the error in the
energy norm. Although such estimates have been proved for BECE in [32], the
analysis of CNLE is distinctly different because CN methods only give a priori
control of average velocities un+1/2 rather than pointwise velocities un+1 (e.g. BE
methods) in l2(H1). Our analysis depends on

• Estimate (75) - bound test-function of convective term in L2 (Section 1.1.1)
• CN a priori estimates - introduce ∆t-restriction (3) (Section 1.1.2)
• Stokes projection - preserve optimal convergence rate (Section 1.1.3).

Indeed, we derive and apply estimate (75)(b) of the explicitly skew-symmetric con-
vective term; we obtain intermediate estimates in the convergence analysis of CNLE
with limited options corresponding to limited control of average velocities (charac-
teristic of CN methods) in l2(H1); and we exploit the Stokes projection to preserve
the optimal convergence rate for the FE and CN discretization.


