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EQUIVALENT A POSTERIORI ERROR ESTIMATES FOR A

CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY

PARABOLIC EQUATIONS

TONGJUN SUN, LIANG GE, AND WENBIN LIU

Abstract. In this paper, we study adaptive finite element approximation in the

backward Euler scheme for a constrained optimal control problem by parabolic e-

quations on multi-meshes. The control constraint is given in an integral sense:

K = {u(t) ∈ L2(Ω) : a ≤
∫
Ω
u(t) ≤ b}. We derive equivalent a posteriori error

estimates with lower and upper bounds for both the state and the control approxi-

mation, which are used as indicators in adaptive multi-meshes finite element scheme.

The error estimates are then implemented and tested with promising numerical ex-

periments.
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1. Introduction

For the optimal control problems governed by linear elliptic or parabolic state equa-
tions, a priori error estimates of the finite element approximation were established long
ago, see [1, 2, 3, 4, 5]. In order to obtain a numerical solution of acceptable accuracy
for the optimal control problem, the finite element meshes have to be refined according
to a mesh refinement scheme. Adaptive finite element approximation uses a posteriori
indicators to guide the mesh refinement procedure. Only the area where the error indica-
tor is larger will be refined so that a higher density of nodes is distributed over the area
where the solution is difficult to be approximated. In this sense adaptive finite element
approximation relies very much on the error indicator used.

It has been recently found that suitable adaptive meshes can greatly reduce the control
approximation errors, see [6, 7, 8, 9, 10]. If the computational meshes are not properly
generated, then there may be large error around the singularities of the control, which
cannot be removed later on. Furthermore in a constrained control problem, the optimal
control and the state usually have very different regularities and their locations. This
indicates that the all-in-one mesh strategy may be inefficient. Adaptive multi-meshes,
that is, separate adaptive meshes which are adjusted according to different error indica-
tors, are often necessary, see [11]. Using different adaptive meshes for the control and the
state allows very coarse meshes to be used in solving the state and co-state equations.
Thus much computational work can be saved because one of the major computational
loads is to solve the state and co-state equations repeatedly. This can be clearly seen
from numerical experiments in [11] and our numerical tests in Section 4.
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Up to now, a posteriori error estimates have mainly been developed for elliptic control
problems particularly with point-wise type control constraints. The details can be found
in the book [12]. In a recent work [13], a posteriori error estimates were derived for the
constrained optimal control governed by an elliptic equation, where the control constraint
is given in an average sense: K = {

∫

u ≥ 0}. These estimates were held on different
multi-meshes for the control and the state.

Although there are so much progress for elliptic control problems, it is much more
complicated to study and implement adaptive multi-meshes computational schemes for
evolutional control problems. There are some papers on a posteriori error estimates for
optimal control problems governed by parabolic equations, e.g. [10, 11]. They mainly
used the well-known stability results of the dual equations [14] to derive a posteriori
error upper bounds, which were presented mainly in C(0, T ;L2(Ω))-norm. However, a
posteriori error lower bounds were not provided in these papers.

The purpose of this work is to derive equivalent a posteriori error estimates for the
following constrained parabolic optimal control problem:

(1.1) min
u∈X,u(t)∈K

1

2

∫ T

0

{

‖y − yd‖2L2(Ω) + ‖u‖2L2(Ω)

}

dt,

subject to

(1.2)



















∂y

∂t
− div(∇y) = f + u, (x, t) ∈ Ω× (0, T ],

y|∂Ω = 0, t ∈ [0, T ],

y(x, 0) = y0(x), x ∈ Ω,

where: Ω is a bounded open set in Rn (n ≥ 2) with the Lipschitz boundary ∂Ω, y0 ∈
H1

0 (Ω), f ∈ L2(0, T ;L2(Ω)), U = L2(Ω), X = L2(0, T ;U). Let K = {u(t) ∈ L2(Ω) :
a ≤

∫

Ω
u(t) ≤ b} be a closed convex set, where a and b are known constants. We

obtain a posteriori error estimates with lower and upper bounds and present numerical
experiments to confirm the effectiveness of the error estimates.

The plan of the paper is as follows. In Section 2, we will construct the multi-meshes
finite element approximation in the backward Euler scheme for (1.1)-(1.2). In Section
3, equivalent a posteriori error estimates are derived for both the state and the control
approximation. Our methods are very different from that of [10, 11]. For the reason
to derive the lower bounds, we do not use the stability results of the dual equations
and derive the error estimates mainly in L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω))-norm (see
Theorem 3.1). Finally numerical experiments are presented in Section 4. To our best
knowledge, this paper appears to be the first trial to consider this case in the literature.

In this paper we adopt the standard notation Wm,q(Ω) for Sobolev spaces on Ω with
norm ‖ · ‖Wm,q(Ω) and seminorm | · |Wm,q(Ω). We set Wm,q

0 (Ω) ≡ {w ∈ Wm,q(Ω) : w|∂Ω =

0}. We denote Wm,2(Ω) (Wm,2
0 (Ω)) by Hm(Ω) (Hm

0 (Ω)). In addition, c or C denotes a
general positive constant independent of h.

2. Finite element approximation

In the rest of the paper, we will take the state spaceW = L2(0, T ;V ) with V = H1
0 (Ω),

the control space X = L2(0, T ;U) with U = L2(Ω).
Let

a(v, w) =

∫

Ω

(∇v) · ∇w, ∀ v, w ∈ V ; (u, v) =

∫

Ω

uv, ∀u, v ∈ U.


