
INTERNATIONAL JOURNAL OF c© 2013 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 10, Number 1, Pages 154–177

A PRIORI ERROR ESTIMATES FOR SEMI-DISCRETE

DISCONTINUOUS GALERKIN METHODS SOLVING

NONLINEAR HAMILTON-JACOBI EQUATIONS

WITH SMOOTH SOLUTIONS

TAO XIONG, CHI-WANG SHU, AND MENGPING ZHANG

Abstract. In this paper, we provide a priori L2 error estimates for the semi-discrete discontinuous
Galerkin method [3] and the local discontinuous Galerkin method [22] for one- and two-dimensional
nonlinear Hamilton-Jacobi equations with smooth solutions. With a special Gauss-Radau projec-
tion, the optimal error estimates on rectangular meshes are obtained.
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1. Introduction

In this paper, we are interested in the a priori L2 error estimates of the semi-
discrete discontinuous Galerkin (DG) and local discontinuous Galerkin (LDG) meth-
ods for smooth solutions of nonlinear Hamilton-Jacobi (HJ) equations in the one-
dimensional case

(1) φt +H(φx, x) = 0, φ(x, 0) = φ0(x)

and in the two-dimensional case:

(2) φt +H(φx, φy, x, y) = 0, φ(x, y, 0) = φ0(x, y).

The Hamiltonian H is assumed to be a smooth function of all the arguments.
When there is no ambiguity, we also take the concise notation H(φx) = H(φx, x)
and H(φx, φy) = H(φx, φy, x, y).

The DG method is a class of finite element methods using completely discontin-
uous piecewise polynomial space for the numerical solution in the spatial variables.
It can be discretized in time by the explicit and nonlinearly stable high order
Runge-Kutta time discretization [20], resulting in the so-called RKDG method.
The RKDG method was first developed for nonlinear hyperbolic conservation laws
by Cockburn et al. in [8, 7, 5, 9]. Later it was generalized to the LDG method for
solving convection-diffusion equations by Cockburn and Shu [10].

The time-dependent Hamilton-Jacobi (HJ) equations (1) and (2) are closely re-
lated to the conservation laws. In the one-dimensional case, they are equivalent
if one takes the spatial derivative in (1) and writes out the equation satisfied by
u = φx. It is thus not surprisingly that many successful numerical methods for
the conservation laws have been adapted to solve the Hamilton-Jacobi equations.
For finite difference schemes, the high order essentially non-oscillatory (ENO) and
weighted ENO (WENO) schemes [18, 14, 25] are such examples. However, it is less
straightforward to adapt DG schemes to solve the Hamilton-Jacobi equations, since
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the nonlinear Hamiltonian H prevents a direct integration by parts. Hu and Shu
developed a DG scheme [13] for solving the nonlinear Hamilton-Jacobi equations,
which is based on the Runge-Kutta discontinuous Galerkin (RKDG) method for
solving conservation laws. They first solve the conservation law equation satisfied
by u = φx with the standard DG method, which can determine φ for each element
up to a constant, and then the missing constant is obtained by integration either
in time or from the boundary. In two dimensions, this scheme involves a least
square procedure to obtain φ from the numerical approximations of u = φx and
v = φy, as they may not satisfy the compatibility condition uy = vx = φxy. Later,
Li and Shu [16] reinterpreted the method in [13] by using a curl-free subspace for
the discontinuous Galerkin method in the two-dimensional case to avoid the least
squares procedure. The two algorithms in [13] and [16] are mathematically equiv-
alent, however the latter avoids the least square procedure and also uses a smaller
finite element space, resulting in a significant simplification in implementation with
a reduced cost. The DG scheme in [13] achieves the optimal k-th order of accuracy
for u = φx (and also v = φy in two dimensions), however the optimal (k + 1)-th
order accuracy for φ is not always observed numerically when k-th degree piece-
wise polynomial space is used. For the one-dimensional case, the error estimates
for conservation laws in [23, 21, 24] can be directly applied, yielding k-th order
error accuracy for the upwind fluxes and (k− 1

2 )-th order error accuracy for general
numerical fluxes for the derivative u = φx when k-th degree piecewise polynomial
space is used. For the two-dimensional case, we can follow the a priori error esti-
mates for u = φx and v = φy in the DG curl-free subspace, however only (k− 1

2 )-th
order accuracy can be obtained either for the upwind fluxes or for general fluxes,
since the special projections need for the optimal error estimates in two dimensions
cannot be defined in the curl-free subspace.

More recently, Cheng and Shu in [3] proposed a DG method for directly solving
Hamilton-Jacobi equations without going through the derivatives u = φx and v =
φy. Also, Yan and Osher [22] designed a direct LDG method for solving Hamilton-
Jacobi equations. Numerically, optimal order error accuracy has been observed for
both of these two methods. For linear Hamiltonians, the DG and LDG methods
in [3] and [22] are equivalent to those for solving conservation laws, hence stability
and error estimates can be obtained following the techniques for conservation laws.
However, for nonlinear Hamiltonians, the methods in [3] and [22] are distinct from
the DG methods for conservation laws. In this paper, we follow and generalize the
techniques in [23, 21, 24] to obtain a priori L2 error estimates for the DG and LDG
methods in [3] and [22] for directly solving nonlinear Hamilton-Jacobi equations
with smooth solutions.

The paper is organized as follows. In Section 2, we introduce notations, defini-
tions and auxiliary results used later in this paper. In Section 3, we obtain a priori
error estimates for the one-dimensional Hamilton-Jacobi equations. In Section 4,
we follow the same line as the one-dimensional case to obtain a priori error esti-
mates for the two-dimensional Hamilton-Jacobi equations. Concluding remarks are
given in Section 5.

2. Notations, definitions and auxiliary results

In this section, we follow [21, 24] to first introduce notations and definitions to
be used later in this paper and also present some auxiliary results. We use a special
Gauss-Radau projection as in [24], and present certain interpolation and inverse
properties for the finite element spaces that will be used in the error analysis.


