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EXTRAPOLATION OF THE FINITE ELEMENT METHOD ON

GENERAL MESHES

QUN LIN AND HEHU XIE

Abstract. In this paper, we consider the extrapolation method for second order elliptic prob-
lems on general meshes and derive a type of finite element expansion which is dependent of the
triangulation. It allows to prove the effectiveness of the extrapolation on general meshes and
also validates the extrapolation method can be applied on the automatically produced meshes of
the general computing domains. Some numerical examples are given to illustrate the theoretical
analysis.
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1. Introduction

It is well known that the extrapolation method, which was established by Richard-
son in 1926, is an efficient procedure for increasing the solution accuracy of many
problems in numerical analysis. The effectiveness of this technique relies heavily
on the existence of an asymptotic expansion for the error. The application of this
approach in finite difference method can be found in the book of Marchuk and
Shaidurov [11]. This technique has been well demonstrated in the frame of the
finite element method [7, 10, 9, 5].

Usually in the finite element method, we first need to get the error expansion
for the solution approximations such as [7, 2, 10, 9, 5]

uh(x)− πhu(x) = c1(u)h
k +O(hk+δ),(1)

in some norm sense, where c1 is a function depending on u and independent of
h, δ > 0, uh and πhu are the finite element approximation and interpolation,
respectively. Then we can use the extrapolation method ([7, 2, 10, 9])

uextrah :=
2kuh/2 − uh

2k − 1
,(2)

which has higher convergence order O(hk+δ) only at the mesh nodes ([7]).
If we want to obtain globally higher order convergence, we must need to apply

the higher order interpolation postprocessing operator Qh ([7, 9, 5])

uextrah :=
2kQh/2uh/2 −Qhuh

2k − 1
,(3)

which has globally higher convergence order O(hk+δ).
So far there are two types of extrapolation schemes for the finite element method

as described above: mesh nodes extrapolation and extrapolation based on the in-
terpolation postprocessing. So, the key for the extrapolation of the finite element
method is whether we can get the expansion (1) for the finite element approxima-
tion. But, so far the expansion (1) almost need structured meshes ([7, 2, 8, 10, 9, 5]).
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So far, we always study the extrapolation situation under the structured mesh
and the mesh condition is the important restrict for the extrapolation method
extended to general meshes. In this paper, we first consider the interpolation ex-
pansion on general meshes and then derive what kind of needed properties of the
meshes to improve the accuracy of the finite element approximations by extrapo-
lation method. For this aim, we derive the definition of the mesh measurement for
the finite element extrapolation. And based on the properties of the mesh mea-
surement, we can obtain that the extrapolation method always has effectiveness on
general meshes.

For simplicity, we consider the following second order elliptic problem

B(u, v) =

∫

Ω

(A∇u · ∇v + ρuv)dxdy = f(v), ∀v ∈ V := H1
0 (Ω),(4)

where A = {aij}1≤i,j≤2 ∈ R2×2 is a symmetric positive definite matrix, ρ ≥ 0 in
Ω, f(·) a bounded linear functional in H−1(Ω), and Ω is a bounded domain in R2

with Lipschitz boundary ∂Ω. For simplicity, we assume the matrix A and function
ρ are smooth enough.

Let Th be the consistent triangulation of the domain Ω in the set of triangular
elements and satisfy the following quasi-uniform condition:

∃σ > 0 such that hK/τK > σ, ∀K ∈ Th

and
∃γ > 0, such that max{h/hK, K ∈ Th} ≤ γ,

where hK is the diameter of K; τK is maximum diameter of the inscribed circle in
K ∈ Th; and h := max{hK ,K ∈ Th}.

The linear finite element space Vh on Th is defined as follows:

Vh =
{
v ∈ H1(Ω), v|K ∈ P1(K), ∀K ∈ Th

}
∩H1

0 (Ω),

where P1 = span{1, x, y}. For our analysis, we need to define the interpolation
operator πh : H2(Ω) 7→ Vh on the mesh Th as

πhu(Zi) = u(Zi), i = 1, 2, 3,

where Zi are the three vertices of element K ∈ Th.
Based on the finite element space Vh, we define the Ritz-projection operator

Lh : V 7→ Vh as

B(Lhu, vh) = f(vh), ∀vh ∈ Vh.(5)

It is known about the convergence rate that

‖Lhu− u‖0 + h‖Lhu− u‖1 ≤ Ch2‖u‖2,(6)

where ‖ · ‖0 denotes the L2-norm.
In order to use the extrapolation method, we need to refine the mesh Th in the

regular way. Each element K ∈ Th is subdivided into 4 congruent triangles by
connecting the midpoints of its edges (see Figure 3) and we get the finer mesh Th/2.
In the similar way, we can define the finite element space Vh/2 and the corresponding
operators πh/2, Lh/2 on the finer mesh Th/2. It is obviously Vh ⊂ Vh/2.

Other notations for Sobolev spaces and norms in them (including with fractional
orders) are standard and can be found in many sources like [4].

The rest of the paper is organized in the following way. In section 2 we give
some useful preliminary lemmas. Interpolation expansions are obtained in section
3. Section 4 is devoted to deriving the asymptotic error expansion of the finite
element approximation. The extrapolation method is discussed in Section 5. In


