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A PHASE FIELD BASED PDE CONSTRAINED OPTIMIZATION

APPROACH TO TIME DISCRETE WILLMORE FLOW

MARTINA FRANKEN, MARTIN RUMPF, AND BENEDIKT WIRTH

Abstract. A novel phase field model for Willmore flow is proposed based

on a nested variational time discretization. Thereby, the mean curvature in

the Willmore functional is replaced by an approximate speed of mean curva-

ture motion, which is computed via a fully implicit variational model for time

discrete mean curvature motion. The time discretization of Willmore flow is

then performed in a nested fashion: in an outer variational approach a natu-

ral time discretization is setup for the actual Willmore flow, whereas for the

involved mean curvature the above variational approximation is taken into ac-

count. Hence, in each time step a PDE-constrained optimization problem has

to be solved in which the actual surface geometry as well as the geometry result-

ing from the implicit curvature motion time step are represented by phase field

functions. The convergence behavior is experimentally validated and compared

with rigorously proved convergence estimates for a simple linear model prob-

lem. Computational results in 2D and 3D underline the robustness of the new

discretization, in particular for large time steps and in comparison with a semi-

implicit convexity splitting scheme. Furthermore, the new model is applied as

a minimization method for elastic functionals in image restoration.
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1. Introduction

In this paper a new phase field model for the time discretization of Willmore
flow, also known as elastic flow, is proposed. Willmore flow is the L2-gradient flow
for the Willmore energy

w[x] =
1

2

∫
Γ[x]

h2dHd−1(1)

on hypersurfaces Γ[x] ⊂ Rd parametrized over itself by the identity mapping x,
where h is the mean curvature of Γ[x] and Hd−1 represents the (d− 1)-dimensional
Hausdorff measure. Physically, this energy reflects an approximation of the stored
energy in a thin elastic shell. Applications of the Willmore energy and Willmore
flow range from the modeling of edge sets in imaging [40, 39, 57, 8] to applications
in surface modeling [54, 5, 4, 47, 56]. An extension of the Willmore energy, the
Helfrich model, is used to describe elastic cell membranes in biology [30, 51, 21].

Willmore surfaces, defined as minimizers of the Willmore energy [55], and Will-
more flow have attracted a lot of attention over the last decade. Simonett proved
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in [52] the existence of a unique and locally smooth solution of Willmore flow for
sufficiently smooth initial surfaces. Furthermore, he proved exponential conver-
gence to a sphere for initial surfaces close to a sphere. The analytic treatment of
Willmore flow of curves and surfaces was investigated by Polden [45, 46] already in
1996. Kuwert and Schätzle treated long time existence and regularity of solutions
in [31, 32, 33]. Recently, Rivière [48] extended results of Kuwert and Schätzle [34]
for co-dimension 1 to arbitrary co-dimension.

A theoretical and numerical treatment of Willmore flow of curves was presented
by Dziuk, Kuwert and Schätzle in [24]. Concerning the numerical approximation
of parametric Willmore flow of surfaces Rusu [50] proposed a mixed method for
the surface parametrization x and the mean curvature vector hn (with n being
the surface normal) as independent variables, see also [11] for the application to
surface restoration. A level set formulation was given in [20] based on a different
type of splitting, involving the level set function φ and a curvature density function
h |∇φ|. An error analysis for spatially discretized, time-continuous Willmore flow
for graphs was presented by Deckelnick and Dziuk in [15]. They used an analogous
splitting in the context of piecewise linear finite elements and proved L∞(L2)-
as well as L2(L2)-error bounds of O(h2 log h) for the discretized graph solution.
Deckelnick and Schieweck demonstrated convergence of a conforming finite element
approximation in case of axially symmetric surfaces [17]. An error analysis in the
case of the elastic flow of curves was recently presented by Dziuk and Deckelnick
in [18]. Barrett, Garcke and Nürnberg [2] and Dziuk [25] presented alternative
finite element algorithms for parametric Willmore flow. The Willmore functional
is invariant with respect to Möbius transformations. In [6] Bobenko and Schröder
proposed a discrete Willmore flow scheme which takes into account a circle pattern
on the surface, whose temporal evolution directly reflects these invariances.

In this paper we discuss Willmore flow in the context of a phase field mod-
el. In their pioneering paper [38] Modica and Mortola proved the Γ-convergence
of aε[u] = 1

2

∫
Ω
ε|∇u|2 + 1

εΨ(u) dx to the area functional, where Ψ is a proper-
ly chosen double well function. This motivated the use of a corresponding phase
field model for the mean curvature motion as the L2-gradient flow for the area
functional [37]. Nochetto, Paolini and Verdi treated in [42, 41] the error between
the exact evolution of an interface under mean curvature flow and the evolution
of a diffusive interface computed via a phase field mean curvature motion mod-
el. They proved an optimal error estimate of order O(ε2). More recently, Evans,
Soner and Souganidis proved in [28] that a scaled Allen–Cahn equation leads to a
generalized motion by mean curvature. De Giorgi conjectured that the functional

wε[u] = 1
2ε

∫
Ω

(
−ε∆u+ 1

2εΨ′(u)
)2

dx , whose integrand is the squared first variation
of aε[u], Γ-converges to the Willmore functional [14]. This functional has been inves-
tigated analytically by Loreti and March in [35] and Bellettini and Mugnai in [3]. Du
et al. proved in [23] by formal asymptotics that the Euler–Lagrange equation of the
phase field formulation converges to the Euler–Lagrange equation of the Willmore
energy (1). For a modified functional a corresponding Γ-convergence result could
finally be established by Röger and Schätzle [49]. Dondl, Mugnai and Röger used a
phase field model for minimizing Euler’s elastica energy of non-overlapping curves
in a bounded domain [19]. Concerning numerically discretized phase field models,
Chen et al. proved in [9] that the zero level set of the solution of the Allen–Cahn
equation converges to the mean curvature flow as ε goes to zero if h,

√
τ = O(εp)


