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PROVABLY SIZE-GUARANTEED MESH GENERATION WITH

SUPERCONVERGENCE

XIANGRONG LI, NAN QI∗, WEIWEI ZHANG, AND YUFENG NIE

Abstract. The mesh conditions of high-quality grids generated by bubble placement method
(BPM) and their superconvergence properties are studied in this paper. A mesh condition that
for each pair of adjacent triangles, the lengths of any two oppsite edges differ only by a high

order of the parameter h is derived. Furthermore, superconvergence estimations are analyzed on
both linear and quadratic finite elements for elliptic boundary value problems under the above
mesh condition. In particular, the mesh condition is found to be applicable to many known
superconvergence estimations under different types of equations. Finally, numerical examples are

presented to demonstate the superconvergence properties on BPM-based grids.
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1. Introduction

Superconvergence of finite element solutions to partial differential equations has
been studied intensively for many decades [1, 2, 3, 6]. It is shown to be an important
tool to develop high-performance finite elements. The superconvergence property
can significantly improve the accuracy of finite element solution and its deriva-
tives with few extra calculation and storage. And it is mainly used to construct a
posteriori error indicator [3].

The existing research work basically follows two approaches. One is to find the
super-close point of finite element interpolation approximation, and then use the
interpolation weak estimation to obtain the superconvergence properties of finite
element solution and its derivatives [4, 5]. Another is to obtain superconvergence
properties by various post-processing techniques, including weighted averaging, lo-
cal L2-projection, extrapolation, and gradient recovery methods. In particular,
gradient recovery methods have achieved great success in numerical simulation-
s in engineering problems, such as the popular superconvergent patch recovery
(SPR) method [6, 7, 8] and the polynomial preserving gradient recovery (PPR)
method [24].

However, in early superconvergence theory, specially structured grids were nor-
mally required, such as the strongly regular grids composed of equilateral trian-
gles [9], which brought a great difficulty to mesh generation techniques. Thus a
consensus was hardly reached between theory of superconvergence and mesh gen-
eration.

Recently, several studies have striven to relieve this issue. From one hand, su-
perconvergence theory was well developed, though under assumed mesh conditions.
In particular, Bank and Xu [10, 11] studied superconvergence on mildly structured
grids where most pairs of elements form an ‘approximate parallelogram’. They also
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proved that linear finite element solution is superclose to its linear interpolant of
exact solution. From this work, Xu and Zhang [12] established the superconver-
gence estimations for several post-processing techniques. Further, Huang and Xu
investigated superconvergence properties of quadratic triangular element on mildly
structured grids [9]. From the other hand, superconvergence phenomena have ex-
isted in several mesh generation algorithms. For example, the centroidal Voronoi
tessellation (CVT)-based methods have been successfully applied to develop high-
quality grids [13]. However, its superconvergence estimations from some certain
mesh conditions were not clearly provided [14].

In recent years, the so called bubble placement method (BPM) has been system-
atically studied by Nie et. al. [15, 16, 17]. The advantage of BPM is to generate
high-quality grids on many complexly bounded 2D and 3D domains, and BPM
can be easily used in adaptive finite element method and anisotropic problem-
s [18, 19, 20, 21, 22, 30]. In addition, due to the natural parallelism of BPM,
computational efficiency has been improved greatly to solve large-scale problem-
s [23]. Yet, superconvergence on BPM-based grids has not been fully explored.
The goal of this paper is to analyze a mesh condition on BPM-based grids, such
that superconvergence results can be obtained both theoretically and numerically.

In this paper, we will carefully investigate the superconvergence properties on
BPM-based grids. Our work is mainly composed of two parts: in the first part, a
mesh condition associated with element edge length and desired length is derived for
BPM-based grids; the second part presents two superconvergence results for linear
and quadratic finite elements, respectively. These superconvergence results can be
used to construct posteriori error estimates under gradient recovery operators.

The rest of this paper is organized as follows. Section 2 gives the derivation
of mesh conditions for BPM-based grids. Superconvergence estimations on linear
and quadratic finite elements are analyzed in Section 3. Numerical experiments
on elliptic boundary value problem with some typical computational domains are
given in Section 4 and further discussed in Section 5. Conclusions and future works
are summarized in Section 6.

2. Mesh conditions

2.1. BPM. Bubble placement method was originally inspired by the idea of bub-
ble meshing [25, 26] and the principle of molecular dynamics. The computational
domain is regarded as a force field with viscosity, and bubbles are distributed in
this domain. Each bubble is driven by interaction forces from its adjacent bubbles,
expressed as [27]:

(1) f (w) =

{
k0

(
1.25w3 − 2.375w2 + 1.125

)
0 ≤ w ≤ 1.5

0 1.5 < w.

The output of bubble centers are denoted as nodes in the computational domain,

where w =
lij
¯lij
, lij is the actual distance between bubble i and bubble j, l̄ij is the

user-defined distance. The motion of each bubble satisfies the Newton’s second
law of motion. BPM can be mainly divided into 3 steps: initialization, dynamic
simulation, bubble insertion and deletion operations. And BPM is regarded to be
controlled by two nested loops, which is schematically illustrated in Fig. 1.


