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AN UNCONDITIONALLY STABLE NUMERICAL

SCHEME FOR A COMPETITION SYSTEM

INVOLVING DIFFUSION TERMS

SETH ARMSTRONG AND JIANLONG HAN

Abstract. A system of difference equations is proposed to approximate the solution of a system

of partial differential equations that is used to model competing species with diffusion. The
approximation method is a new semi-implicit finite difference scheme that is shown to mimic the
dynamical properties of the true solution. In addition, it is proven that the scheme is uniquely
solvable and unconditionally stable. The asymptotic behavior of the difference scheme is studied

by constructing upper and lower solutions for the difference scheme. The convergence rate of the
numerical solution to the true solution of the system is also given.
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1. Introduction

We consider the following system of nonlinear parabolic partial differential equa-
tions used to model dynamic population distribution or biomass of two species that
are competing for resources while each undergoes diffusion:

pt = m1△p+ a1p− b1p
2 − c1pq (t > 0, x ∈ Ω),(1)

qt = m2△q + a2q − b2q
2 − c2pq (t > 0, x ∈ Ω),(2)

∂p

∂η
|∂Ω = 0,

∂q

∂η
|∂Ω = 0 (t > 0),(3)

p(0,x) = p0(x), q(0,x) = q0(x) (x ∈ Ω).(4)

Here, p(t,x) and q(t,x) denote the time-dependent populations of the two species,
Ω ∈ Rn is a bounded domain with outward normal η along the boundary. The
Neumann boundary conditions suggest absence of migration. There is a substan-
tial body of work about this system, where many properties of the solutions are
extracted, including such considerations as coexistence and long-term population
behaviors of the competing species; see, for example, [1], [2], [3], and [6] and ref-
erences therein. If c1 = c2 = 0, each equation in the paired system has the form
of a so-called Fisher’s equation. Ways to approach the numerical solutions of these
equations can be found in [4] and [5].

For a numerical approximation of (1)-(4), the author in [8] proposes a discretiza-
tion that gives rise to a fully implicit finite difference scheme. For Ω ⊂ R, this takes
on the form

pk+1
i − pki
△t

= m1

[
pk+1
i+1 − 2pk+1

i + pk+1
i−1

(△x)2

]
+ pk+1

i (a1 − b1p
k+1
i − c1q

k+1
i )(5)
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qk+1
i − qki

△t
= m2

[
qk+1
i+1 − 2qk+1

i + qk+1
i−1

(△x)2

]
+ qk+1

i (a2 − b2q
k+1
i − c2p

k+1
i )(6)

where pki = p(k△t, i△x), qki = q(k△t, i△x).
The author in [8] then used Picard iteration to construct sequences of decreasing

upper solutions {p̄ k
i }m and {q̄ k

i }m, and of increasing lower solutions {
¯
p k
i }m and

{
¯
q k
i }m, such that if the time mesh size △t is chosen sufficiently small,

lim
m→∞

{p̄ k
i }m = lim

m→∞
{
¯
p k
i }m = pki and

lim
m→∞

{q̄ k
i }m = lim

m→∞
{
¯
q k
i }m = qki .

To study the asymptotic behavior of the numerical solution, the author in [8] s-
tudied the steady state solution of (5)-(6), or the solutions of the nonlinear algebraic
system

m1

[
pi+1 − 2pi + pi−1

(△x)2

]
+ a1pi − b1(pi)

2 − c1piqi = 0.(7)

m2

[
qi+1 − 2qi + qi−1

(△x)2

]
+ a2qi − b2(qi)

2 − c2piqi = 0.(8)

In [9]-[12], the author studies the result under the conditions where the minimal
solution (

¯
p∗i ,

¯
q∗i ) is equal to the maximal solution (p̄∗i , q̄

∗
i ) of (7)-(8). If this is the

case, the author shows that (pki , q
k
i ) → (

¯
p∗i ,

¯
q∗i ) = (p̄∗i , q̄

∗
i ).

The fully implicit scheme proposed in [8] conserves the dynamic properties of
the system (1)-(4). The author in [8] also applied this method in [13] for a coupled
system of quasilinear elliptic equations. However, it takes a significant amount of
time to approximate the numerical solution using Picard iteration. In addition, it
is hard to estimate the convergence rate as △t and △x approach zero. Finally,
△t must be chosen sufficiently small to guarantee convergence of the fully implicit
system to the theoretical solution.

In this paper, we develop a new method for numerical approximation of the true
solution (p, q) to (1)-(4); call this numerical approximation (pk, qk) for the time be-
ing. We propose a nonstandard finite difference method for discretizing the system
that ends up requiring that a semi-implicit system of difference equations be solved
for (pk, qk) rather than a fully implicit system as in [8]. We find the numerical so-
lution to the system of difference equations directly. Then, fully independent of the
choice of △t, we prove the nonnegativity of pk and qk, the stability of the difference
scheme, and that (pk, qk) converges to the true solution (p, q) of the system. We al-
so show its rate of convergence to be O(∆t+∆x2). We construct an upper solution
(p̄k, q̄k) and a lower solution (

¯
pk,

¯
qk) to the system of difference equations using a

related system of ordinary differential equations. Having constructed these upper
and lower solutions, we will then be able to give a sufficient condition for coexis-
tence of solutions of the system of difference equations and to provide a complete
analysis of the long-term behavior of the numerical solution to (1)-(4).

In Section 2, we will introduce the difference scheme used for the approximation
of (1)-(4) for Ω ⊂ R. We prove existence of the numerical solution to the scheme,
and that it is stable independent of the choice of ∆t and ∆x. We finish by giving
the convergence rate of the numerical scheme to the true solution. In Section 3,
we give more properties of the asymptotic behavior of the numerical solutions to


