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AN ERROR ESTIMATE OF A EULERIAN-LAGRANGIAN

LOCALIZED ADJOINT METHOD FOR A SPACE-FRACTIONAL

ADVECTION DIFFUSION EQUATION

TINGTING WANG1, XIAOFAN LI2, AND HONG WANG3

Abstract. We derive a Eulerian-Lagrangian localized adjoint method (ELLAM) for a space-

fractional advection diffusion equation that includes a fractional Laplacian operator for modeling
such application as a superdiffusive advective transport. The method symmetrizes the numerical
scheme and generates accurate numerical solutions even if large time steps and relatively coarse
grid meshes are used. We also study the structure of the stiffness matrix to further reduce the

computational complexity and memory requirement. We prove an error estimate for the ELLAM.
Numerical experiments are presented to show the potential of the method.
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1. Introduction

Advection diffusion partial differential equations (PDEs) model advective d-
iffusive transport in porous media, stochastic dynamics and other applications
[3, 10, 12]. The traditional integer-order advection diffusion PDEs, which can be
viewed as the Fokker-Planck PDEs of the Ito stochastic processes driven by Brow-
nian motion, were shown to provide accurate description of Fickian diffusive trans-
port in relatively homogeneous porous media. However, in strongly heterogeneous
porous media, the underlying particle motions exhibit superdiffusive transport be-
havior that has an algebraic decaying heavy tail and so has a large deviation from
the Brownian motion. Consequently, space-fractional advection diffusion PDEs
were shown to provide an accurate description of the superdiffusive transport [13].

It is well known, even in the context of the traditional integer-order advection
diffusion PDEs, conventional numerical methods tend to generate some combina-
tion of nonphysical oscillations and excessive numerical diffusion [5, 19]. Eulerian-
Lagrangian methods provide a competitive means for accurately and efficiently solv-
ing these problems [2, 9, 8]. These methods exhibit the advantages of alleviating
the Courant number restrictions and reducing the time truncation errors. Namely,
they can produce accurate numerical solutions even if the mesh is coarse and the
time step is large. There are two principal drawbacks of the Eulerian-Lagrangian
method, i.e., it is failure to conserve mass and it is difficult to treat various boundary
conditions. However, for advection-dominated problems, the ELLAM can overcome
the two principal shortcomings of Eulerian-Lagrangian method, while maintaining
their advantages [11]. In this paper we derive a ELLAM for a space-fractional
advection-diffusion PDE and prove its error estimate. In the framework of the EL-
LAM [5], the advective component is treated by a characteristic tracking algorithm
and the diffusive component is treated separately by using a more standard spatial
approximation, i.e., the Eulerian-Lagrangian methods combine the convection and
capacity terms in the governing equation to carry out the temporal discretization in
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a Lagrangian coordinate, and discretize the standard or anomalous diffusion term
on a fixed mesh. In other words, the characteristic methods change an fractional
advection diffusion equation into a fractional diffusion equation, which transports
along with the characteristic curves. We also analyze the structure of its stiffness
matrix to develop a fast solution method for the resulting linear algebraic system
with a full stiffness matrix. Finally, we conduct some numerical examples to verify
the accuracy of the ELLAM scheme and the efficiency of the fast solution method.

The remainder of this paper is organized as follows. We begin in section 2 by
giving the nonlocal model and some preliminaries. In section 3, we derive the
ELLAM scheme for the fractional equation. We provide an error estimate for the
ELLAM scheme in section 4. Section 5 investigates the structure of the coefficient
matrix and section 6 proves an auxiliary lemma used in section 4. In section 7, we
conduct some numerical tests. Finally, we summarize some remarks.

2. Model Problem and Preliminaries

We consider the following space-fractional advection diffusion transport PDE

(1)
pt + (V (x, t)p)x − d pxx + γ(−∆)

α
2 p = f(x, t), x ∈ R, t ∈ (0, T ],

p(x, t) = 0, x /∈ (a, b), t ∈ (0, T ], p(x, 0) = p0(x), x ∈ R,
where

(2) (−∆)
α
2 p(x, t) = Cα

∫
R

p(x, t)− p(y, t)

|x− y|1+α
dy, α ∈ (0, 2),

with Cα = α
21−α

√
π

Γ( 1+α
2 )

Γ(1−α
2 ) . In such application as advective diffusive transport,

p(x, t) usually represents the concentration of the solute or solvent in the fluid,
V (x, t) refers to the velocity field of the fluid, −dpxx models the Fickian diffusive
transport, γ(−∆)

α
2 p(x, t) models the superdiffusive transport, and f(x, t) repre-

sents the source term. Here d and γ are nonnegative constants. In stochastic
dynamics, p(x, t) is the probability density function that describes the ensemble
of realizations of a Lévy process, −dpxx models the Brownian motion component
and V (x, t) is the drift. p0(x) ≥ 0 is the initial configuration of the model which
satisfies the constraint ∫

R
p0(x)dx = 1.

Since p(x, t) is zero outside the interval (a, b) for any time t ∈ (0, T ], we just consider
this model on the interval (a, b) in this paper.

2.1. Sobolev Spaces and Approximation Properties. First, letW k
p (a, b) con-

sist of functions whose weak derivatives up to order-k are p-th Lebesgue integrable
in (a, b). Let Hk(a, b) := W k

2 (a, b)

∥v∥Hk(a,b) :=
(
∥v∥2Hk−1(a,b) +

∥∥∥dkv
dxk

∥∥∥2
L2(a,b)

)1/2

.

For any Banach space X, we introduce Sobolev spaces involving time

W k
p (t1, t2;X) :=

{
f :

∥∥∥∂βf

∂tβ
(·, t)

∥∥∥
X

∈ Lp(t1, t2), 0 ≤ β ≤ k, 1 ≤ p ≤ ∞
}
,

∥f∥Wk
p (t1,t2;X) :=


( k∑
β=0

∫ t2

t1

∥∥∥∂βf

∂tβ
(·, t)

∥∥∥p
X
dt
)1/p

, 1 ≤ p < ∞,

max
0≤β≤k

ess sup
(t1,t2)

∥∥∥∂βf

∂tβ
(·, t)

∥∥∥
X
, p = ∞.


