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ROBUST AND EFFICIENT MIXED HYBRID DISCONTINUOUS

FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE

PROBLEMS
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Abstract. Because of the discontinuity of the interface problems, it is natural to apply the
discontinuous Galerkin (DG) finite element methods to solve those problems. In this work, both
fitted and unfitted mixed hybrid discontinuous Galerkin (MHDG) finite element methods are
proposed to solve the elliptic interface problems. For the fitted case, the problems can be solved
directly by MHDG method. For the unfitted case, the broken basis functions (unnecessary to
satisfy the jump conditions) are introduced to those elements which are cut across by interface,
the weights depending on the volume fractions of cut elements and the different diffusions (or
material heterogeneities) are used to stabilize the method, and the idea of the Nitsche’s penalty

method is applied to guarantee the jumps on the interface parts of cut elements. Unlike the
immersed interface finite element methods (IIFEM), the two jump conditions are enforced weakly
in our variational formulations. So, our unfitted interface MHDG method can be applied more
easily than IIFEM to general cases, particularly when the immersed basis function cannot be
constructed. Numerical results on convergence and sensitivities of both interface location within a
cut element and material heterogeneities show that the proposed methods are robust and efficient
for interface problems.
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1. Introduction

Interface problems arise frequently in many applications, as for example, in heat
and mass transfer, electromagnetic wave propagation, cell and bubble formation,
biological science, fluid mechanics and many other practical applications. In these
problems, the solution and the flux are usually nonsmooth on interface. Interface
problems with fixed interfaces can be solved efficiently by fitted interface methods
[7, 5, 10, 20]. In these methods the meshes are constructed to align or approximate
to the interface. However, for the moving interface problems, the fitted interface
methods are very costly because of the generation of new fitted interface meshes at
each time step.

To overcome this difficulty, the unfitted interface methods have been studied.
The immersed boundary method was proposed in [29] to model blood flow in the
heart. Since then, other unfitted interface methods, such as the immersed interface
(finite difference) method [21, 19], the immersed interface finite element method
(IIFEM) [23, 24, 15, 17, 18], the ghost fluid method [14, 25, 26], the extended
finite element method (XFEM) [28, 4, 37], the Nitsche’s penalty method [16, 1, 27],
and so on, have been developed. In unfitted interface methods, the meshes are
fixed, independent of the interface geometry and the interface usually cuts through
cells. Then the moving interface problems can be solved with fixed meshes, without
remeshing process.
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Because of the discontinuity of the interface problems, it is natural to apply the
DG methods to solve those problems. The DG methods were introduced indepen-
dently in [13, 31, 6]. Since then, numerous DG methods have been developed. Be-
cause of the flexibility for mesh and polynomial refinements, localizability, stability
and parallelizability, the DG methods have been widely applied to many problems.
Recently, a fitted DG method with a priori and a posteriori error estimations for the
interface diffusion problem was studied in [10], the hybridizable DG (HDG) method
based on [11] was applied to the fitted interface diffusion problem in [20], an unfitted
DG method based on Nitsche’s penalty method for the interface diffusion problem
was introduced and analyzed in [27], and a selective immersed DG method for the
interface diffusion problem was proposed in [17]. Besides, the mixed method can
be used to get more precise approximation to the flux which is necessary in many
applications, particularly for the coupled problems [34, 33, 35, 36, 32, 22]. From
computational point of view, a particular advantage of the MHDG method is that
it can be formulated and implemented at the element level. This allows to eliminate
the primal and flux variables on the element level, then to obtain a global system
only for the Lagrange multipliers.

In this work, we propose both fitted and unfitted MHDG methods for elliptic in-
terface problems. For the fitted case, we solve the problems directly by the MHDG
methos [13, 2, 8, 9, 11, 12]. For the unfitted case, similarly to the idea presented
in[16], we propose the broken Raviart-Thomas basis functions (unnecessary to sat-
isfy the jump conditions) to those elements which are cut across by interface, we
introduce the weighted averages depending on the volume fractions of cut elements
and the material heterogeneities to stabilize the method, and we apply the idea of
the Nitsche’s penalty method to guarantee the jumps on the interface parts of cut
elements. Unlike the IIFEM method, the two jump conditions are enforced weakly
in our variational formulations. Thus, our unfitted MHDG method can be applied
more easily than IIFEM method to general cases, particularly when the immersed
basis function cannot be constructed. Numerical results on convergence and sensi-
tivities of both interface location within a cut element and material heterogeneities
show that the proposed methods are robust and efficient for interface problems.

The paper is organized as follows. In section 2, we introduce the elliptic interface
model problem, define the notations and the finite element spaces. In section 3,
we present the fitted MHDG method and the corresponding numerical results. In
section 4, we formulate the unfitted MHDG method. However, numerical results
show that the flux on interface cannot be well approximated by the formulation.
To get a good approximation to the flux on interface and to guarantee the interface
jumps, we introduce two penalty terms to the formulation in section 4.2. As a result
we obtain numerically a robust and efficient MHDG method for both cut elements
with arbitrary small volume fractions and large material heterogeneities. Finally
in section 5 we present some concluding remarks. The numerical analysis of the
proposed interface MHDG method should be our next work.


