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A RELAXATION APPROACH TO DISCRETIZATION

OF BOUNDARY OPTIMAL CONTROL PROBLEMS

OF SEMILINEAR PARABOLIC EQUATIONS

B. KOKKINIS

Abstract. We consider an optimal boundary control problem described by a semilinear parabolic

partial differential equation, with control and state constraints. Since this problem may have no
classical solutions, it is reformulated in the relaxed form. The relaxed control problem is discretized
by using a finite element method in space and a partially implicit scheme in time, while the
controls are approximated by piecewise constant relaxed controls. We first state the necessary

conditions for optimality for the continuous problem and the discrete relaxed problem. Next,
under appropriate assumptions, we prove that accumulation points of sequences of optimal (resp.
admissible and extremal) discrete relaxed controls are optimal (resp. admissible and extremal)

for the continuous relaxed problem.
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1. Introduction

It is well known that optimal control problems, without any convexity assump-
tions on the data, have no classical solutions in general. These problems are usually
studied by considering their corresponding relaxed formulations, where at each time,
the control variable is not a vector in some set but instead a probability measure
on that set. Relaxation theory has been introduced, initially, in order to prove ex-
istence of optimal controls and later to derive necessary conditions for optimality.
There exist an extensive literature concerning relaxation of control problems, see
e.g. Warga [19], Roub́ıček [16], Fattorini [11] and the references therein.

In this paper we consider an optimal boundary control problem for systems gov-
erned by a semilinear parabolic partial differential equation, with control and state
constraints. The problem is motivated, for example, by the control of a heat (or
other) diffusion process whose source is nonlinear in the heat and temperature, with
nonconvex cost and control constraint set (e.g. on-off type control). This class of
problems has been extensively studied by several authors, among them Ahmed et
al. [1], Casas [5], Barbu [2], Fattorini et al. [10], Tröltzsch [18] etc. We first s-
tate the existence of optimal controls and the necessary conditions for optimality
for the continuous relaxed problem. Then, the relaxed problem is discretized by
using a Galerkin finite element method with continuous piecewise linear basis func-
tions in space for space approximation, and a partially implicit scheme in time,
while the controls are approximated by piecewise constant relaxed controls. The
discretization is motivated by the fact that in practice optimization methods are
usually applied to the problem after some discretization. Then, we prove the ex-
istence of optimal controls and derive necessary conditions for optimality for the
discrete relaxed problem. Finally, we study the behaviour in the limit of the above
approximation. More precisely, we prove, under appropriate assumptions, that ac-
cumulation points of sequences of optimal (resp. admissible and extremal) discrete
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relaxed controls are optimal (resp. admissible and extremal) for the continuous
relaxed problem. The novelty of the present paper is in the finite element approx-
imation of a boundary optimal control problem using, as a tool, relaxed controls,
which can be further used in optimization algorithms (see [8]). For a different
approach, using differential inclusions and approximations in abstract spaces, of a
Mayer type optimal control problem, see Mordukhovich et al. [14], where existence
theory, necessary optimality conditions and convergence are considered.

For approximation of nonconvex optimal control and variational problems, and
of Young measures, see e.g. [4, 6, 9, 13, 15] and the references therein.

2. The continuous optimal control problems

Let Ω be a bounded domain in Rd with boundary Γ = Γ0 ∪ Γ1, I = (0, T ),
T <∞, an interval, and set Q := Ω× I, Σ0 := Γ0× I, Σ1 := Γ1× I and Σ := Γ× I.
Consider the parabolic state equation

(1) yt +A(t)y = f0(x, t, y(x, t)) in Q,

(2) y(x, t) = 0 on Σ0,

(3)
∂y

∂νA
= f1(x, t, w(x, t)) on Σ1,

(4) y(x, 0) = y0(x) in Ω,

where A(t) is the second order elliptic differential operator

(5) A(t)y := −
d∑

j=1

d∑
i=1

(∂/∂xi)[aij(x, t)∂y/∂xj ]

and

(6)
∂y

∂νA
=

d∑
j=1

d∑
i=1

aij (x, t)
∂y

∂xj
νj , with (x, t) ∈ Σ1,

where ν (x) is the outwards unit vector to Γ at the point x.
We denote by (·, ·) and ∥ · ∥ the inner product and norm in L2(Ω), by (·, ·)Γ1 and

∥ · ∥Γ1
the inner product and norm in L2(Γ1), by (·, ·)1 and ∥ · ∥1 the inner product

and norm in the Sobolev space H1(Ω) and by < ·, · > the duality bracket between
V :=

{
v ∈ H1(Ω) : v |Γ0 = 0

}
, where v |Γ0 is the trace function on Γ0 and its dual

space V ∗. The state equation will be interpreted in the following weak form

(7)
< yt, v > +a(t, y, v) = (f0(t, y), v) + (f1(t, w), v)Γ1 , ∀v ∈ V, a.e. in I,
y(t) ∈ V a.e. in I, y(0) = y0,

where the derivative yt is understood in the sense of V -vector valued distributions,
and a(t, ·, ·) denotes the usual bilinear form on V × V associated with A(t)

(8) a(t, y, v) :=
d∑

j=1

d∑
i=1

∫
Ω

aij(x, t)
∂y

∂xi

∂v

∂xj
dx.

We define the set of classical controls

W := {w : Σ1 → U |w measurable} ⊂ L∞(Σ1),

where U is a compact subset of Rd′
, and the functionals

(9) Gm(w) :=

∫
Q

g0m(x, t, y)dxdt+

∫
Σ1

g1m(x, t, y, w)dγdt, m = 0, ..., q.


