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1. Introduction

Fractional differential equations (FDE) become an important tool in modelling various

phenomena [8,15,27,33]. Here we consider the scalar FDE

C
t0

Dβu(t) = g (t,u(t)) , t0 ¶ t ¶ T,

u(t0) = u0,
(1.1)

where 0< β < 1, g : [t0, T ]×C→ C and C
t0

Dβu(t) is the fractional derivative in the Caputo

sense — cf. [25], i.e.

C
t0

Dβu(t) =
1

Γ (1− β)

∫ t

t0

u′(s)
(t − s)β

ds.

If the function g is continuous and satisfies the Lipschitz condition with respect to the

second variable, the problem (1.1) has a unique solution [7].

The solutions of most FDEs are not known, so that a variety of approximation methods

have been developed, including finite difference scheme [14, 23, 29], Galerkin finite ele-

ment method [16,32], separable preconditioner [18], L1-approximation scheme [17,30],

Galerkin spectral method [26] and parareal algorithms [28]. Lubich [19, 21, 22] started

the development of fractional linear multistep methods (FLMMs). In contrast, Galeone and

∗Corresponding author. Email addresses: hit_zjj@hit.edu.cn (J. Zhao), yangx@hit.edu.cn (Y. Xu)

http://www.global-sci.org/eajam 506 c©2019 Global-Science Press



Generalised Backward Differentiation Formulae for Fractional Differential Equation 507

Garrappa [9] proposed another approach to FLMMs via the expansion of local truncation

errors. Nevertheless, the above methods still have a number of deficiencies. The resulting

schemes are prone to heavy order limitation for A-stable methods. Lubich [20] extended the

famous concept of classical second Dahlquist barrier of linear multistep methods (LMMs)

for ordinary differential equations (ODE) [5] to fractional case.

For ODE, this barrier can be overcome if the discrete problem generated by LMMs is

completed by imposing boundary value methods (BVMs) because BVMs have a good stabil-

ity and high accuracy — cf. [3,4,12]. This motivated numerous researches for correspond-

ing fractional BVMs and FBVMs. In particular, the authors of this paper, used generalised

Adams methods (GAMs) to introduce a family of fractional convolution quadratures [1,2].

It was shown that such methods can overcome classical order barrier. More recently, an A0-

stable high order fractional backward differentiation formulae has been considered [31].

Here, we employ generalised backward differentiation formulae (GBDF) to construct a new

type of FBVMs for the FDE (1.1).

This paper is organised as follows. In Section 2, we present general FBVMs for FDE

(1.1) and introduce the notion of the consistence of the methods proposed. In Section 3,

a fractional GBDF (FGBDF) is constructed and its convergence is analysed. Numerical ex-

amples presented in Section 4 illustrate theoretical results.

2. Consistence of FBVMs

Let us start with the k-order n-step FLMMs for the Eq. (1.1) introduced in [9, 10] —

viz. we consider the system of equations

n
∑

j=0

αk, jun− j = hβ
n
∑

j=0

γk, j gn− j, (2.1)

where αk, j and γk, j are constants subject to the order conditions, un is an approximation to

u(tn) at the point tn = t0 + nh and gn = g(tn,un).

Moreover, we define an operator Lh by

Lh [u(t), t,β] := C0(n,β)u (t0) +

k
∑

p=1

hpCp(n,β)u(p) (t0) + hk+1Rk+1,

where Rk+1 is the remainder in the Taylor expansion of the function u(t) and

C0(n,β) :=

n
∑

j=0

αk, j,

Cp(n,β) :=
1

p!

n
∑

j=0

(n− j)pαk, j −
1

Γ (p+ 1− β)
n
∑

j=0

(n− j)p−βγk, j, p = 1,2, · · · , k.

In order to determine the convergence order, we set

Cp(n,β) = 0, p = 0,1, · · · , k. (2.2)


