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Abstract. Iterative Laplace transform methods for fractional partial differential equa-

tions and fractional partial integro-differential equations arising in European option pric-

ing with the Lévy α-stable processes and regime-switching or state-dependent jump rates

are studied and numerical contour integral methods to inverse the Laplace transform are

developed. It is shown that the methods under consideration have the second-order con-

vergence rate in space and spectral-order convergence for Laplace transform inversion.
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1. Introduction

Assume that the logarithmic price of the underlying asset x t = logSt follows regime

switching model [5–8] and Lévy α-stable processes [3], i.e.

dx t = (r(χ(t))− γ(χ(t)))dt +σ(χ(t))dL
α,−1
t , k = 1,2, · · · , d , (1.1)

where χ(t) is a continuous-time Markov chain with d-states χk and k ∈ D = {1,2, · · · , d}.
Moreover, we also assume that at each state χk, the interest rate r(χk) = rk and the volatility

σ(χk) = σk are nonnegative constants, γ(χk) = γk = −(1/2)σαk sec(απ/2) is the convexity

adjustment and L
α,−1
t denotes the maximally skewed log stable process. The stochastic

differential equation (1.1) represents a special case of the Lévy α-stable process L
α,β
t with

a tail index α ∈ (1,2) and the skewed index β = −1. The detailed financial meaning of the
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model (1.1) are described by Carr et al. [3] and Elliott et al. [5]. Consider the generator

matrix

Q =





−q11 q12 q13 · · · q1d

q21 −q22 q23 · · · q2d
...

. . .
. . .

. . .
...

qd−1,1 qd−1,2 · · · −qd−1,d−1 qd−1,d

qd,1 qd,2 · · · qd,d−1 −qd,d





of the Markov chain process with constants qk j ≥ 0, k, j ∈ D such that

d∑

j=1, j 6=k

qk j = qkk, k ∈ D.

Let τ = T − t be the time to maturity and v(k; x ,τ) represents the value function of the

vanilla European option at the current state χ(t) = χk and the current log price of asset

x t = x . According to the Black-Scholes-Merton model, the option value function v(k; x ,τ)

satisfies the following coupled fractional partial integro-differential equations — cf. Refs. [4,

33]:

∂

∂ τ
v(k; x ,τ) = γk −∞Dαx v(k; x ,τ) + (rk − γk)

∂

∂ x
v(k; x ,τ)

− (rk + qkk)v(k; x ,τ) +

d∑

j=1, j 6=k

qk jv( j; x ,τ), k ∈ D (1.2)

with the initial condition

v(k; x , 0) = (ex − K)+ :=max(0, ex − K), (1.3)

and the asymptotic boundary conditions

lim
x→−∞ v(k; x ,τ) = 0, lim

x→+∞
�
(ex − Ke−rkτ)− v(k; x ,τ)

	
= 0, (1.4)

which are similar to the ones proposed by Lee [15] for k ∈ D. Note that v(k; x , 0) is the

payoff function for vanilla European call option.

The Riemann-Liouville fractional derivative −∞Dα
x

of v(k; x ,τ) is defined by

−∞Dαx v(k; x ,τ) :=
1

Γ (n−α)
∂ n

∂ xn

∫ x

−∞
(x − y)n−α−1v(k; y,τ)d y, n− 1< α < n. (1.5)

We recall that two other fractional derivatives — viz. the Grünwald-Letnikov and Caputo

derivatives are equivalent to (1.5) if the lower limit in the corresponding integrals is set to

−∞, cf. Ref. [25].


