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Abstract. A finite difference method for a class of time-space fractional diffusion equa-
tions is considered. The trapezoidal formula and a fourth-order fractional compact dif-
ference scheme are, respectively, used in temporal and spatial discretisations and the
method stability is studied. Theoretical estimates of the convergence in the L2-norm
are shown to be O (τ2 + h4), where τ and h are time and space mesh sizes. Numerical
examples confirm theoretical results.
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1. Introduction

Fractional partial differential equations play an important role in modeling of anoma-
lous phenomena and in complex systems. Physically significant models in anomalous diffu-
sion deal with the limiting distribution of a group of particles in a stochastic process. These
limits can be determined by using continuous time random walks, where each random par-
ticle jump occurs after a random waiting time. Fractional derivatives in space represent
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large particle jumps, while long waiting time is associated with fractional derivatives in
time. Anomalous diffusion is used to interpret the hydrogen effect on the morphology of
silicon electrodes in electrochemical conditions [26] and in nonlinear electrophoresis [6].
The anomalous diffusion patterns in amorphous electro-active materials can be considered
by fractional calculus [7, 8]. Fractional dynamics can cause the statistics change for the
joint velocity-position probability density function of single particles in turbulent flow [25].
Water transport in unsaturated soils is described by the fractional generalisation of Richard-
son’s law [38].

To obtain analytic solutions of fractional partial differential equations [40] one can use
Fourier transform, Adomian decomposition [37], Laplace transform [27], shifted Legendre
polynomials [1] and Mellin transform. There is a large number of works devoted to ana-
lytic methods for fractional differential equations, but closed form solutions have been only
found for a small class of equations. Therefore, various numerical methods have been devel-
oped recently, with L1-formula often used for the approximate the Caputo time-fractional
derivative — cf. Refs. [11,13,24,33,34,41,42,46]. Although, these methods are uncondi-
tionally stable, they cannot achieve the second order time accuracy [22,36,45]. For solving
time–fractional differential equations a modified L1-formula, called L1-2-formula, has been
proposed in [23]. Another modification — viz. L2-1σ-formula, was introduced in [2], with
the corresponding difference scheme retaining the second-order temporal convergence, and
a number of new high-order approximations to the Caputo time fractional derivative have
been suggested in [9, 32]. They extend L1-2-formula and have the numerical accuracy
of order r − α, where r ≥ 4 is a positive integer. A finite difference method for space
variables and L1-approximation of the Caputo fractional derivative was used to find a nu-
merical solution of the time-fractional sub-diffusion equation on an unbounded domain in
two-dimensional space [35]. Tang [47] used trapezoidal rule in a finite difference method
for partial integro-differential equations with a weakly singular kernel, Chen et al. [14]
proposed fractional trapezoidal rule (FTR) difference scheme, combining the second order
difference quotient for spatial discretisation and FTR alternating direction implicit method
in solving a two-dimensional fractional evolution equation. In order to speed up the eval-
uation of the Caputo fractional derivative in L2-1σ-formula, Yan et al. [49] employed an
exponential approximation of the kernel function in the Caputo fractional derivative. Ji
and Sun [31] discretised time fractional-order derivative by the second-order shifted and
weighted Grünwald-Letnikov difference operator and Chen et al. [12] used a fractional
trapezoidal rule type difference scheme with second order accuracy both in temporal and
spatial directions.

Numerical methods for time-space fractional diffusion equations having a high-order
of accuracy are less studied. Thus Ding et al. [16] considered a fourth-order scheme for
space Riesz fractional diffusion equation and Ding et al. [17] used Fourier analysis to ap-
ply 6-th, 8-th, 10-th and 12-th order schemes to the Riesz derivative. Later on, Ding and
Li [18] developed five high-order algorithms for the Riesz derivatives and applied them to
the Riesz-type turbulent diffusion equation. High-order finite difference schemes for one-
and two-dimensional time-space fractional sub-diffusion equations are proposed in [39].
A finite difference scheme with second-order accuracy in both time and space directions


