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Abstract. The convergence of Parareal-Euler and -LIIIC2 algorithms using the backward

Euler method as a G -propagator for the linear problem U′(t) + α(t)AηU(t) = f(t) with

a non-constant coefficient α is studied. We propose to employ the propagator G to a

constant model U′(t) + βAηU(t) = f(t) with a special coefficient β instead of applying

both propagators G and F to the same target model. We established a simple formula

to find an optimal parameter βopt , minimising the convergence factor for all mesh ra-

tios. Numerical results confirm the proximity of theoretical optimal βopt to the optimal

numerical parameter.
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1. Introduction

A parareal method is an iterative algorithm characterised by two propagators G and

F , respectively, associated with large ∆T and small ∆t step sizes, such that ∆T = J∆t

and J ≥ 2 is an integer. The G -propagator is defined by a cheap, stable, low order time-

integrator, such as backward Euler method, while the F -propagator is defined by an ex-

pensive high order time-integrator. The algorithm proposed by Lions et al. [21] is widely

used in Hamiltonian systems [1, 3, 8], parabolic equations [6, 24], first and second order

hyperbolic equations [4, 7], PDE-constrained control and optimisation [5, 22, 23], singu-

larly perturbed ODEs and PDEs [12,18], Volterra integral equations [20,38], time-periodic

problems [9, 32], simulations of plasma turbulence [28, 29] and fractional PDEs [34, 37].
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The algorithm converges rapidly and robustly with respect to the change of mesh ratio

J and discretisation parameters ∆t and ∆x . Therefore, it is possible to describe the so-

lution at later stages without accurate information about earlier times, while the global

accuracy of the method using only a few iterations is comparable to higher order expensive

F -propagators with fine time step sizes. In this work we use the backward Euler method

as a G -propagator in parareal algorithms for the following problem:

∂ u(x, t)

∂ t
= α(t)(−∆)ηu(x, t) + f (x, t), (x, t) ∈ Ω× (0, T ), (1.1)

where α(t) > 0,η ∈ (0,1) and Ω ⊂ Rd with d = 1,2,3. Moreover, the spatial fractional

Laplacian operator (−∆)α is defined via an eigenfunction expansion on a finite-size spa-

tial domain similar to [2, 14, 15, 26, 31, 39, 41]. It is worth noting that the definition of

this operator based on Fourier transform [17, 30] is less convenient from numerical point

of view, although in both cases the matrix transform method provides an efficient spatial

discretisation [14,25,39,40]. This discretisation of the fractional Laplacian (−∆)α consists

in establishing the matrix representation A for the approximation of the negative Laplacian

−∆, which is then raised to the same fractional power α, thus obtaining (−∆)α ≈ Aα. In this

way, the matrix-vector product Aαb can be approximated by various numerical methods,

including contour integrals [2], Lanczos method [31,39] and others — cf. Refs. [16,19,27].

Consider a mesh with m nodes and let u j(t) denote the value of a function u(x, t) at

j-th node x j . To find the approximate solution U(t) of (1.1), we apply the matrix transform

method to the Eq. (1.1) and arrive at the system of ODEs

U′(t) +α(t)AηU(t) = f(t), (1.2)

with a diagonalisable matrix A ∈ Rm×m such that σ(A) ⊂ [0,+∞). The convergence of the

parareal algorithm for the problem (1.1) with constant coefficient α is well studied. In par-

ticular, if G is the backward Euler method and F the exact-numerical-propagator — i.e. if

F = e−αAη∆t , then according to Fig. 1, the convergence factor ρ :=maxz∈σ(∆TαAη)K (z, J)

satisfies the relation

ρ ≈ 1

3
for all J ≥ 2, (1.3)

where σ(∆TαAη) is the spectrum of ∆TαAη and the term K (z, J), called the contraction

factor of the parareal algorithm, is defined by

K (z, J) =

�� �e−z/J
�J − 1/(1+ z)

��
1− |1/(1+ z)| =

��e−z − 1/(1+ z)
��

1− |1/(1+ z)| .

The term 1/(1+z) is the stability function for backward Euler’s method. We note however

that in practical computations, the function e−αAη∆t is not the best choice forF -propagator,

since it requires a special treatment [13]. If one uses a Runge-Kutta method as an F -

propagator, the contraction factor K has the form

K (z, J) =

��R J
f
(z/J)−Rg(z)

��

1− |Rg(z)|
,


