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Abstract. A fully discrete A-φ finite element scheme for a nonlinear model of type-II

superconductors is proposed and analyzed. The nonlinearity is due to a field dependent

conductivity with the regularized power-law form. The challenge of this model is the

error estimate for the nonlinear term under the time derivative. Applying the backward

Euler method in time discretisation, the well-posedness of the approximation problem

is given based on the theory of monotone operators. The fully discrete system is derived

by standard finite element method. The error estimate is suboptimal in time and space.
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1. Introduction

Superconductors can conduct the electric current freely without any resistances under

the critical temperature. This magic character attracts many physicians and mathemati-

cians. The superconductors can be mainly divided into two classes, the type-I and the

type-II, depended on another important parameter, the critical magnetic field. The type-I

superconductors are also called the Pippard conductors or the soft conductors, which is

consist of the pure metals with one low (soft) critical field. The type-II ones are consist

of the alloys with two critical fields, the lower one Hc1 and the higher one Hc2. The type-

II superconductors get into the mixed state when the outside magnetic field holds that

‖Hc1‖ < ‖H‖ < ‖Hc2‖. During this period, some magnetic fluxes begin to penetrate into

the type-II superconductors, and perform like a nonlinear diffusion process. Most of the

high temperature superconductive materials belong to the type-II.

With being widely used in industry, it is very important to study the numerical methods

to the macroscopic models of the type-II superconductors. The mathematical model for

the type-II superconductors is derived from the Maxwell’s equations by dropping the dis-

placement current term, and replaced the linear Ohm’s constitutive law with some certain

nonlinear constitutive laws, such as the Bean’s critical-state model [2], the Rhyner’s power

law [12] and so on (more overview of models refers to [6]).

∗Corresponding author. Email addresses: 
hentao�
u
.edu.
n (T. Chen), kangtong�
u
.edu.
n

(T. Kang), lijun�
u
.edu.
n (J. Li)

http://www.global-sci.org/eajam 658 c©2017 Global-Science Press



An A-φ Scheme for Type-II superconductors 659

Let Ω ⊂ R3 be a convex and smooth bounded domain with the connected boundary

denoted by Γ . The eddy current model for the type-II superconductor states as follows [13],

¨

∇×H = Js + J in Ω× (0, T ),

∇× E = −∂t(µH) in Ω× (0, T ),
(1.1)

where E is the electric field, H is the magnetic field, Js is the source current density, J is the

induced current density, and µ denotes the magnetic permeability of the medium. Suppose

Ω is occupied by superconductive material Ωc with boundary Γc, surrounded by insulating

region Ωnc. The conservation law of current density is as follows,

J(E) =

�

|E|−α E , in Ωc,

0, in Ωnc,
(1.2)

with α ∈ (0,1). This power law describes the conductive relation of the type-II supercon-

ductors [14,15]. Further, we assume that µ is a piecewise positive constant in Ω, and there

exist constants µmin and µmax such that 0< µmin ≤ µ ≤ µmax .

In this paper, we consider the Maxwell’s equations (1.1) with the power law nonlinear

eddy current (1.2), and apply the A-φ method to decompose the electric field into sum-

mation of a vector potential and a gradient of any scalar potential in the conductor, while

we only need to solve the vector potential in the insulator. Although the A-φ method may

bring an extra unknown in the conductor, it has some nice properties:

• Both A and φ potentials are continuous, and the discontinuity of the electric field at

the interface of different media is characterized by the gradient of the scalar potential

φ [7].

• The A-φ method can be applied to both simply and multiply connected conductor [4].

Moreover, the convexity or smoothness of the conductors Ωc is no more needed.

• Under the same mesh partition, the number of edges is usually more than the number

of nodes. The computational cost of the nodal A-φ method is no more than the one

of the edge element method [9].

• The A-φ nodal element method takes advantages from other disciplines and many

popular finite element packages and computational techniques can be applied di-

rectly, such as natural coupling to moment and boundary element methods, global

energy conservation [3,11].

The A-φ method has been widely used in electrical engineering and its superiors have

been demonstrated by practical applications [4, 7, 8, 10, 13]. However, there are rare lit-

eratures for rigorous mathematical theories on the A-φ method, especially for nonlinear

Maxwell’s equations. This is the motivation of our work.

By Decomposing the electric field E into E = A+∇φ, where A is a vector potential, and


