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Abstract. We develop an unconditionally energy stable immersed boundary method,

and apply it to simulate 2D vesicle dynamics. We adopt a semi-implicit boundary forcing

approach, where the stretching factor used in the forcing term can be computed from

the derived evolutional equation. By using the projection method to solve the fluid

equations, the pressure is decoupled and we have a symmetric positive definite system

that can be solved efficiently. The method can be shown to be unconditionally stable, in

the sense that the total energy is decreasing. A resulting modification benefits from this

improved numerical stability, as the time step size can be significantly increased (the

severe time step restriction in an explicit boundary forcing scheme is avoided). As an

application, we use our scheme to simulate vesicle dynamics in Navier-Stokes flow.
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1. Introduction

The immersed boundary (IB) method proposed by Peskin [26] has been successfully

applied to many fluid-structure interaction problems — cf. the review [27]. The IB method

employs an Eulerian description for the fluid velocity and a Lagrangian description for the

configuration of the immersed elastic structure (immersed boundary or interface). The im-

mersed structure exerts some force into the fluid that drives the fluid flow, and at the same

time the fluid flow carries the immersed structure to a new configuration. This interaction

between the fluid and the immersed structure is linked through a force spreading and ve-

locity interpolating operator, on using a smoothed version of the Dirac delta function [27].
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The IB method is easy to implement and efficient, simply because the immersed structure

(no matter how complex) is regarded as a force generator to the fluid, so that the fluid

variables can be solved in a fixed Eulerian domain without generating any structure-fitting

grid. Many fast efficient fluid solvers can therefore be applied.

Despite substantial success with practical applications using the IB method, it still has

some drawbacks from the numerical point of view. Firstly, the method is only first-order

accurate, whereas second-order accurate fluid solvers are used. The immersed elastic struc-

ture is usually represented one-dimensionally lower than the fluid space so that the exerted

force is singular (delta function like), and smoothing the delta function in a regular finite

difference scheme causes the method to be first-order accurate only. Although there have

been several attempts to improve accuracy, even some including adaptive local mesh re-

finements near the immersed boundary, formally those methods still remain to be made

second-order accurate [6,7,17,22,28].

Another issue is numerical stability. As is well known, the IB method suffers a time step

restriction to maintain numerical stability [21, 27, 29, 30]. This restriction becomes more

stringent when the elastic force is stiff and the force spreading occurs at the beginning of

each time step (an explicit scheme). It is notable that such a time step restriction cannot be

alleviated even when the fluid solver is discretised in a semi-implicit manner — i.e. with

explicit differencing of the advection term and implicit differencing of the diffusion term.

Rather than performing the force spreading at the beginning of the time step, one might

consider doing so at an intermediate stage (a semi-implicit scheme) or even at the end of

the time step (an implicit scheme). In the past decade, there have been many attempts

to reduce the stiffness or to overcome this time step restriction [3, 4, 8, 10, 11, 23, 24].

However, there is always a trade-off between the stability and efficiency of the algorithms

involved. In this article, we propose a new semi-implicit scheme that can be solved quite

efficiently, where the resultant linear system is symmetric positive definite and the time

step size can be significantly increased.

In Section 2, we introduce the formulation for the incompressible Navier-Stokes equa-

tions with an immersed elastic interface. We then develop semi-implicit immersed bound-

ary schemes based on the projection method for the fluid solver in Section 3, and show

that these developed schemes are unconditionally energy stable. Then we modify these

semi-implicit schemes for efficient implementation, with the resultant linear system sym-

metric positive definite. Numerical results from simulations of vesicle dynamics are given

in Section 4, followed by our conclusions and discussion of future work in Section 5.

2. Governing Equations

We begin by stating the mathematical formulation of the Navier-Stokes flow with an

immersed boundary (or interface). We consider a moving, immersed, elastic boundary

Γ(t), which exerts forces into an incompressible fluid in a fixed fluid domain Ω. We assume

that the fluids inside and outside of the boundary are the same, so the governing equations


