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Abstract. Given two n×n matrices A and A0 and a sequence of subspaces {0}=V0⊂
· · · ⊂ Vn = R

n with dim(Vk) = k, the k-th subspace-projected approximated matrix Ak

is defined as Ak = A+ Πk(A0 − A)Πk , where Πk is the orthogonal projection on V ⊥
k

.

Consequently, Ak v = Av and v∗Ak = v∗A for all v ∈ Vk. Thus (Ak)
n
k≥0

is a sequence

of matrices that gradually changes from A0 into An = A. In principle, the definition of

Vk+1 may depend on properties of Ak, which can be exploited to try to force Ak+1 to be

closer to A in some specific sense. By choosing A0 as a simple approximation of A, this

turns the subspace-approximated matrices into interesting preconditioners for linear

algebra problems involving A. In the context of eigenvalue problems, they appeared

in this role in Shepard et al. (2001), resulting in their Subspace Projected Approximate

Matrix method. In this article, we investigate their use in solving linear systems of

equations Ax = b. In particular, we seek conditions under which the solutions xk of

the approximate systems Ak xk = b are computable at low computational cost, so the

efficiency of the corresponding method is competitive with existing methods such as the

Conjugate Gradient and the Minimal Residual methods. We also consider how well the

sequence (xk)k≥0 approximates x , by performing some illustrative numerical tests.
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1. Introduction

Subspace iterative methods for linear algebra problems are based on the repeated ap-

plication of two consecutive ideologically separate steps — viz. the generic selection of a

suitable approximation from the space, followed by increasing its dimension in an expan-

sion of the subspace. In this section, we recall two well-known selection mechanisms in the

context of linear systems — viz. the Ritz-Galerkin and Minimal Residual procedures. We

then suggest an alternative.
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1.1. Selecting approximations from a subspace V

In the context of solving a linear system Ax = b and a given a subspace V ⊂ Cn, two

well known and successful selection mechanisms are the Ritz-Galerkin approximation

Ritz-Galerkin: Find x̂ ∈ V such that b− Ax̂ ⊥ V , (1.1)

and the Minimal Residual approximation

Minimal Residual: Find x̂ ∈ V for which ‖b− Ax̂‖ is minimal. (1.2)

On choosing a matrix V with columns spanning V and denoting the transpose by the

superscript t, the Ritz-Galerkin approximation can be computed by solving

x̂ = V y where V t(b− AV y) = 0 , (1.3)

whereas the Minimal Residual approximation can be computed by solving

x̂ = V y where (AV )t(b− AV y) = 0 , (1.4)

because the minimum in (1.2) is realised by the x̂ ∈ V for which Ax̂ equals the orthogonal

projection of b on AV . Although neither approximation x̂ depends on the actual choice of

the basis V for V , the basis is of interest for efficient implementation of the method. For

example, if the matrix A is symmetric and positive definite, in the Ritz-Galerkin approach

the basis can be chosen to be A-orthonormal — i.e. such that V tAV = I and consequently

x̂ = V y = V V t b. If the space V is then expanded by appending another A-orthonormal

basis vector v to V , the new approximation differs only by a simple update vv t b from the

previous one. However, this elegant outcome should not deter us from considering other

options for the basis for V .

Remark 1.1. If the spaces (Vk)
n
k=0

form a sequence of Krylov subspaces, the Ritz-Galerkin

approach leads to the Conjugate Gradient method [9] when A is symmetric and positive

definite, and the Full Orthogonalization method for general non-symmetric A. The Minimal

Residual approach leads to the MinRES [12] method if A is symmetric, and to the GMRES

[16] method for non-symmetric A. The Ritz-Galerkin approach is also used in coarse grid

corrections within the MultiGrid method. Both the Ritz-Galerkin and the Minimal Residual

approach are also used in finite element methods to approximately solve partial differential

equations.

1.2. Selecting an approximation associated with a subspace V

The Ritz-Galerkin and the Minimal Residual approach define aproximations v from the

space V , in the sense that x̂ ∈ V . If the space has dimension k << n, not more than k

matrix-vector products (MVPs) with A are needed to compute these approximations. Since

the number of MVPs with A is often a good indication of the cost of a subspace iterative


