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Abstract. A high-order finite difference scheme for the fractional Cattaneo equation

is investigated. The L1 approximation is invoked for the time fractional part, and a

compact difference scheme is applied to approximate the second-order space derivative.

The stability and convergence rate are discussed in the maximum norm by the energy

method. Numerical examples are provided to verify the effectiveness and accuracy of

the proposed difference scheme.
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1. Introduction

In this paper, we consider the numerical solution of a generalized Cattaneo equation

[5,17] with a non-homogeneous term f (x , t):

∂ u(x , t)

∂ t
+ γ
∂ αu(x , t)

∂ tα
= D

∂ 2u(x , t)

∂ x2
+ f (x , t) , (1.1)

where γ is a nonnegative constant related to the relaxation time, D is the diffusion con-

stant, and f (x , t) is a known function. The notation ∂ α/∂ tα in (1.1) denotes the time

fractional derivative operator based on Caputo’s definition [9,16], given by

∂ αu(x , t)

∂ tα
≡ 1

Γ(2−α)

∫ t

0

∂ 2u(x , s)

∂ s2

ds

(t − s)α−1
, α ∈ (1,2) , (1.2)

where Γ(·) is the gamma function. The standard Cattaneo equation is normally obtained

by using a generalized form of Fick’s law [8]. The equation describes a diffusion process
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with a finite velocity of propagation and has a variety of applications — e.g. extended ir-

reversible thermodynamics [8], modelling both heat and mass transfer [7], (inflationary)

cosmological models [27], and the diffusion theory in crystalline solids [6]. However, the

classical Cattaneo equation cannot describe the anomalous diffusion behavior observed in

many natural systems. To address this issue, Compte and Metzler [1] generalized the clas-

sical Cattaneo model to the time fractional Cattaneo models and studied the properties

of the corresponding fractional Cattaneo equations in both the long-time and short-time

limits. Following Compte and Metzler, Kosztołowicz and Lewandowska [10] presented a

theoretical foundation for studies of the subdiffusion impedance using a hyperbolic equa-

tion. Povstenko [17] considered the generalized Cattaneo-type equations with time frac-

tional derivatives and formulated the corresponding theory of thermal stresses. Qi and

Jiang [18] extended the classical Cattaneo equation to the space-time fractional Cattaneo

equation and derived the exact solution by joint Laplace and Fourier transforms.

Although some theoretical analysis has been presented for the generalized Cattaneo

equations [1, 17, 18], little work has been done on numerical methods. Currently, Ghaz-

izadeh et al. [5] derive the generalized Cattaneo equation using a concept of single-

phase lag equation [25] and a recently introduced fractional Taylor series expansion for-

mula [15]. Two finite difference schemes, namely an explicit predictor-corrector scheme

and a totally implicit scheme, have been developed [5]. In recent years, some numerical

methods have been proposed for solving other types of fractional differential equations.

Meerschaert and Tadjeran [13,14] investigated space-fractional differential equations, and

proposed an implicit Euler method based on a shifted Grünwald formula to approximate

fractional derivatives of order 1 < α < 2. Yuste and Acedo [26] proposed an explicit finite

difference method and analyzed the stability condition for the fractional subdiffusion equa-

tion. Langlands and Henry [11] also considered this type of equation, and constructed an

implicit finite difference by using the L1 scheme to approximate the fractional derivative.

The accuracy and stability were discussed by the Fourier method. Zhuang et al. [28] stud-

ied the stability and convergence of an implicit numerical method by the energy method.

Cui [2] used a fourth-order compact difference scheme to increase the spatial accuracy

for solving the fractional anomalous subdiffusion equation with a nonhomogeneous term.

Du et al. [3] derived a compact difference scheme for the fractional diffusion-wave equa-

tion based on the L1 approximation. Gao and Sun [4] first transformed the original frac-

tional subdiffusion problem to an equivalent form and then applied the compact difference

scheme with the L1 approximation to discretize the resulting equation. By introducing a

new inner product, they analyzed the stability and convergence of the proposed scheme by

the energy method. For relevant main elements and ideas, reference can be made to the

original papers in Refs. [12,23].

We consider the numerical solution of the generalized Cattaneo equation (1.1). In Sec-

tion 2, two new variables are introduced to transform the original equation (1.1) into a low

order system of equations (cf. [21]), and the numerical solution of the low order equation

is then investigated by applying the L1 approximation to the time fractional derivative and

the compact difference scheme to the second-order space derivative (cf. [3,4]). Theoretical

analysis in Section 3 shows that the resulting difference scheme is unconditionally stable


