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Abstract. Based on the generalised Arnoldi procedure, we develop an implicitly restarted

generalised Arnoldi method for solving the large-scale polynomial eigenvalue problem.

By combining implicit restarting with the refinement scheme, we present an implicitly

restarted refined generalised Arnoldi (IRGAR) method. To avoid repeated converged

eigenpairs in the later iteration, we develop a novel non-equivalence low-rank deflation

technique and propose a deflated and implicitly restarted refined generalised Arnoldi

method (DIRGAR). Some numerical experiments show that this DIRGAR method is ef-

ficient and robust.
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1. Introduction

We consider the matrix polynomial

P(λ) = λdAd +λ
d−1Ad−1 + · · ·+λA1 + A0, (1.1)

where the coefficient matrices Ai(0≤ i ≤ d) are n×n large and sparse. The scalar λ is said

to be an eigenvalue of P(λ) if det(P(λ)) = 0, where det(P(λ)) denotes the determinant

of the matrix P(λ). The nonzero vectors x , y are said to be the right and left eigenvectors

corresponding to the eigenvalue λ if

P(λ)x = 0 and yH P(λ) = 0 , (1.2)

respectively. This is the well known polynomial eigenvalue problem (PEP). For conve-

nience, the two-tuple (λ, x) or the triplet (λ, x , y) is used to denote an eigenpair of the

problem (1.2).
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The PEP reduces to the generalised eigenvalue problem if d = 1; and to the quadratic

eigenvalue problem (QEP) if d = 2, which is one of the most important cases. Thus for

the QEP Tisseur & Meerbergen [31] surveyed many applications, properties and numerical

methods. The cubic eigenvalue problem (CEP) when d = 3 arises in the numerical sim-

ulation of the semiconductor quantum dot model [15, 32]; and higher order polynomial

eigenvalue problems arise in stability analysis in control systems [12], the simulation of the

three-dimensional pyramid quantum dot heterostructure [16], and in structural dynamic

analysis via the dynamic element method [26] or the least squares element method [27].

Gohberg et al. [9] established the mathematical theory for matrix polynomials. Chu [6],

Dedieu & Tisseur [7], Higham & Tisseur [13] considered perturbation analysis for the PEP.

Tisseur [30], and Higham et al. [10] and Lawrence & Corless [21] analysed the backward

error. Here we consider the computation of some eigenpairs with eigenvalues of largest

modulus. If some eigenpairs with eigenvalues nearest to a target σ are desired, one may

apply the shift-invert transformation λ̃ = 1/(λ−σ) to the matrix polynomial P(λ) and

consider the transferred matrix polynomial

P̃(λ̃) = λ̃d Ãd + λ̃
d−1Ãd−1 + · · ·+ λ̃Ã1 + Ã0 , (1.3)

where Ãi =
∑i

j=0
C

i− j

d− j
σi− jAd− j(0 ≤ i ≤ d), C k

n
= n!

k!(n−k)!
. For σ = 0 (some smallest mod-

ulus eigenvalues are desired), such that the new coefficient matrices satisfy Ãi = Ad−i (0≤
i ≤ d), one simply inverts the order of the coefficient matrices Ai(0≤ i ≤ d) in P(λ). If the

coefficient matrix Ad is singular, then λ=∞ is an eigenvalue of the PEP (1.2) — and here

we assume that Ad is nonsingular throughout.

The classical approach for solving the PEP (1.2) is to linearise the problem and produce

the following generalised eigenvalue problem:

C y = λG y , (1.4)

where

C =









−Ad−1 −Ad−2 · · · −A0

I
. . .

I 0








, G =









Ad

I
. . .

I








,

y =









λd−1 x

λd−2 x
...

x








. (1.5)

Many different linearisations are possible [1,9,11,23,24]. Provided Ad is nonsingular, the

generalised eigenvalue problem (1.4) may be reduced to the standard eigenvalue problem

M y = λy, (1.6)


