
East Asian Journal on Applied Mathematics Vol. 6, No. 1, pp. 42-59

doi: 10.4208/eajam.200715.181115a February 2016

Submatrix Constrained Inverse Eigenvalue Problem

involving Generalised Centrohermitian Matrices in

Vibrating Structural Model Correction

Wei-Ru Xu and Guo-Liang Chen∗

Department of Mathematics, Shanghai Key Laboratory of Pure Mathematics and

Mathematical Practice, East China Normal University, Shanghai, 200241,

P. R. China.

Received 20 July 2015; Accepted (in revised version) 18 November 2015

Abstract. Generalised centrohermitian and skew-centrohermitian matrices arise in a

variety of applications in different fields. Based on the vibrating structure equation

M ẍ +(D+G) ẋ +K x = f (t) where M , D, G, K are given matrices with appropriate sizes

and x is a column vector, we design a new vibrating structure mode. This mode can be

discretised as the left and right inverse eigenvalue problem of a certain structured ma-

trix. When the structured matrix is generalised centrohermitian, we discuss its left and

right inverse eigenvalue problem with a submatrix constraint, and then get necessary

and sufficient conditions such that the problem is solvable. A general representation of

the solutions is presented, and an analytical expression for the solution of the optimal

approximation problem in the Frobenius norm is obtained. Finally, the corresponding

algorithm to compute the unique optimal approximate solution is presented, and we

provide an illustrative numerical example.
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1. Introduction

Generalised centrohermitian and skew-centrohermitian matrices arise in a variety of

applications in fields such as information theory, linear system or estimate theory, signal

processing, the numerical solution of differential equations and Markov processes — e.g.

see Refs. [5, 7, 9–12, 17, 18, 21]. Here we consider vibrating structures such as bridges,

highways, buildings and vehicles that are generally characterised by a linear second-order

differential system

M ẍ + (D + G) ẋ + K x = f (t) ,
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where x is a column vector and M , D, G and K are matrices of appropriate size representing

the mass (usually a diagonal matrix), damping, gyroscopic and stiffness, respectively. The

general solution to the corresponding homogeneous equation M ẍ +(D+G) ẋ +K x = 0, on

omitting the forcing function f (t), plays an important role in the stability of the vibratory

behaviour. In particular, we discuss the undamped non-gyroscopic model governed by

�
M ẍ + K x = 0 ,

ÿHM + yHK = 0 ,

where y is a column vector of the same size as x and superscript H denotes the conjugate

transpose (cf. below). The relevant solution form

�
x(t) = u eλt ,

y(t) = v eµt ,

for this linear system immediately leads to the two quadratic eigenvalue problems

�
(λ2M + K)u = 0 ,

vH (µ2M + K) = 0 ,

where (λ,u) and (µ,v) are their eigenpair solutions, respectively. Purely imaginary eigen-

values (λ = iλ1 , µ = iµ1) define the natural frequency (λ1 or µ1) of the system and the

corresponding natural mode u (v). Letting eλ= λ2
1
, eµ = µ2

1
, A= M−

1
2 KM−

1
2 , z1 = M

1
2 u and

z2 = M
1
2 v, we have

Az1 =
eλ z1 , zH

2
A= eµ zH

2
. (1.1)

The natural frequencies of the system and its associated natural modes are obviously

determined by the stiffness matrix K or the mass matrix M . In practice, the stiffness matrix

K is more complicated than the mass matrix M , and they are usually estimated by mea-

surements or computed by some numerical methods (e.g. the finite element method). In

engineering, some of the natural frequencies and natural modes can usually be identified in

dynamic models, but there are often discrepancies between them and measured natural fre-

quencies (natural modes). It is therefore often important to modify an approximate model

such that the difference is minimised [13] — i.e. so the natural frequencies and natural

modes in a corrected model are exactly the same as the identified natural frequencies and

natural modes. In general, the stiffness or the mass matrix is corrected by vibration tests

via nonlinear optimal optimisation techniques [3,4], but the existence and the uniqueness

of the solution and the solution is not always optimal. Here we present a method to correct

such an approximation model based on the left and right inverse eigenvalue problem (with

spectral and structural constraint), where we find a matrix A of order n containing the given

part of left and right eigenvalues and corresponding left and right eigenvectors. Prototypes

of this problem also arise in the perturbation analysis of matrix eigenvalues [19] and in

recursive processes [8], and has practical application in scientific computation and other

engineering fields.


