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Abstract. An artificial boundary condition method, derived in terms of infinite Fourier

series, is applied to solve a class of quasi-Newtonian Stokes flows. Based on the natural

boundary reduction involving an artificial condition on the artificial boundary, the cou-

pled variational problem and its numerical solution are obtained. The unique solvability

of the continuous and discrete formulations are discussed, and the error analysis for the

problem is also considered. Finally, an a posteriori error estimate for the corresponding

problem is provided.
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1. Introduction

Interior and exterior nonlinear transmission problems often arise in elasticity [4, 10]

and fluid mechanics [11]. The coupled finite element method (FEM) and artificial bound-

ary condition method [8,9], often called the natural boundary element method [5,20] or

DtN method [6,13], can be one of the most effective methods to solve exterior nonlinear-

linear transmission problems — cf. [2–4,7,10,12,15,19] and references therein for more

details.

There are several investigations for incompressible materials on bounded domains us-

ing finite or mixed finite element methods (e.g. [1,2,14,16–18]), and some on unbounded

domains (e.g. [3,10,12]), using coupling methods. The purpose of this work is to investi-

gate a class of quasi-Newtonian Stokes flows where the kinematic viscosity is a nonlinear

monotone function of the fluid velocity gradient in the plane.
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We consider the following configuration. Let Ω0 be a bounded and simply connected

domain in R2 with a sufficiently smooth boundary ∂Ω0 = Γ0; and let Ω1 be the annular

region with the boundaries Γ0 and Γ1, where Γ1 is another sufficiently smooth boundary

with an interior region that contains Ω0, and Ωc = R2\(Ω0 ∪ Ω1). In what follows, R2×2

denotes the space of square matrices of order 2 with real entries, I ¬ (δi j) is the identity

matrix of R2×2, and given τ ¬ (τi j), σ ¬ (σi j) ∈ R
2×2 we write

tr(τ)¬

2∑

i=1

τii , σ : τ ¬

2∑

i, j=1

σi jτi j ,

where σ(u, p) ¬ (σi j(u, p)) ∈ R2×2 is the Cauchy stress tensor and ǫ(u)¬ (ǫi j(u)) ∈ R
2×2

denotes the strain tensor of small deformations with representation ǫi j(u)¬
1

2
(
∂ ui

∂ x j
+
∂ u j

∂ xi
).

The constitutive equation in Ω1 is then given by

σ(u, p) =ψ(|∇u|)∇u − pI , (1.1)

where ψ : R+→ R+ is the nonlinear kinematic viscosity function of the fluid that satisfies

the Carreau law for viscoelastic flows ψ(t) ¬ κ0 + κ1(1+ t2)(β−2)/2, ∀ t,κ0 ∈ R
+, β ∈

[1,2] — cf. [18]. In passing, we note that Eq. (1.1) reduces to the usual linear model

when β = 2, and that the extension of our approach to kinematic viscosity functions not

satisfying Eq. (1.2) or Eq. (1.3) below (which includes the Carreau law with κ0 = 0 or

β > 2) will be reported elsewhere.

Let ψi j : R2×2 → R be the mapping defined by ψi j(r ) ¬ ψ(|r |)ri j for all r ¬ (ri j) ∈
R

2×2 with i, j ∈ {1,2}, and let the mappingΦ : R2×2→ R2×2 be defined byΦ(r )¬ (ψi j(r ))

for all r ∈ R2×2. Then it is easy to check that ψ is of class C1, and there exists C1, C2 > 0

such that for all r ¬ (ri j), s ¬ (si j) ∈ R
2×2 we have

|ψi j(r )| ≤ C1‖r‖R2×2 ,

���
∂

∂ rkl

ψi j(r )

��� ≤ C1 , ∀ i, j, k, l ∈ {1,2} (1.2)

and
2∑

i, j,k,l=1

∂

∂ rkl

ψi j(r )si jskl ≥ C2‖s‖
2
R

2×2 . (1.3)

Furthermore, Eq. (1.1) can be rewritten as

σ(u, p) = Φ(∇u)− pI ; (1.4)

and for a linear elastic material in Ωc this reduces to

σ(u, p) = 2µǫ(u)− pI , (1.5)

where µ is the familiar Lamé constant.

We now take [H1(Ω1)]
2 ∩ [H1

l oc
(Ωc)]2 as the space of functions v ¬

�
v1

v2

�
defined in

Ω1 ∪Γ1 ∪Ω
c such that v |Ω1

∈ [H1(Ω1)]
2 and v |Ωc ∈ [H1

l oc
(Ωc)]2. For given f ∈ [L2(Ω1)]

2,


