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Abstract. In this paper we envisage building Probabilistic Boolean Networks (PBNs)

from a prescribed stationary distribution. This is an inverse problem of huge size that

can be subdivided into two parts — viz. (i) construction of a transition probability

matrix from a given stationary distribution (Problem ST), and (ii) construction of a

PBN from a given transition probability matrix (Problem TP). A generalized entropy

approach has been proposed for Problem ST and a maximum entropy rate approach for

Problem TP respectively. Here we propose to improve both methods, by considering a

new objective function based on the entropy rate with an additional term of Lα-norm

that can help in getting a sparse solution. A sparse solution is useful in identifying the

major component Boolean networks (BNs) from the constructed PBN. These major BNs

can simplify the identification of the network structure and the design of control policy,

and neglecting non-major BNs does not change the dynamics of the constructed PBN

to a large extent. Numerical experiments indicate that our new objective function is

effective in finding a better sparse solution.
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1. Introduction

Coordinated interactions and regulations among genes and gene products form so-

called gene regulatory networks, an important research topic in genomic research [3, 16]

where inference from gene expression data plays an important role. In recent years,

many formalisms have been proposed for modeling gene regulatory networks — including

Bayesian networks [20], Boolean Networks (BNs) [18], multivariate Markov chain [7] and

regression [31] models, and Probabilistic Boolean Networks (PBNs) [23,24]. The various

mathematical models are reviewed in Refs. [15,25].
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The Boolean Network (BN) model and its Probabilistic Boolean Network (PBN) exten-

sion have received considerable attention, as they capture some fundamental characteris-

tics of the gene regulations that occur in gene regulatory networks [28]. Consequently, one

can understand a particular gene regulatory network and study the influence of different

genes. In a BN model, first introduced by Kauffman [18, 19], each gene is represented as

a node and each node can take two possible values (1 and 0). The value of a target node

is determined by several input nodes (regulators) via a Boolean function. A BN model is

deterministic, and randomness only arises from its initial state. Given this inherent deter-

ministic directionality and also the finite number of possible states, the state transitions

allow a BN network to enter a set of states and then cycle among them in a fixed order

forever, so the set of states is an attractor. If the attractor contains only one state, it is

called a singleton attractor; and if it contains more than one state, it is called an attractor

cycle [1,18,19]. Since attractors represent stable states in a dynamic system, they can re-

flect the long term behavior of a BN. In particular, it has been demonstrated that attractors

are associated with cellular phenotypes [28].

A BN is not only inherently deterministic but also a closed system and therefore has

modeling limitations, but a PBN extension provides a stochastic aspect. A PBN consists of a

cluster of BNs with selection probabilities assigned, and each BN can be considered a “con-

text”. At any given time instant, gene regulations are governed by one of the component

BNs. At the next time instant, the system may switch to another BN with a certain switch-

ing probability, when the genes can interact under a different context. Thus a PBN model is

more flexible than BN model, and it can be described via a Markov chain [8,23,24]. Since

a PBN also has a finite number of states, its long term behavior can be characterized by

the stationary distribution, providing a possible way to infer the PBN from gene expression

data.

Time-independent gene expression data can be obtained from micro-array studies,

usually by sampling steady states of the network. Using this data, one can estimate a

stationary distribution of the network and hence consider building a PBN. This construc-

tion problem involves identifying all the component BNs and their corresponding selection

probabilities, such that the long term behavior of the constituting PBN is consistent with

the prescribed stationary distribution. There has been some preliminary work based on

entropy theory [11, 12, 32], using the entropy rate as the objective function. We recall

from information theory that the entropy can measure the amount of information missing

before reception. Indeed, one can minimize the amount of missing information during the

construction of PBNs from gene expression data, using entropy as the objective function.

Motivated by the results in [12,32], we tackle the inverse problem by splitting it into two

different inverse problems — viz. (i) construction of a transition probability matrix from

a given stationary distribution (Problem ST), and (ii) construction of a PBN from a given

transition probability matrix (Problem TP). For the Problem ST, we propose to construct

a transition probability matrix from the prescribed stationary distribution. The state tran-

sitions in a PBN can be regarded as a Markov chain, and our aim is to find a transition

probability matrix that has the prescribed stationary distribution. For Problem TP the main

aim is to construct a PBN from a given transition probability matrix by identifying all the


