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Abstract. We consider a nonsymmetric Toeplitz system which arises in the discretiza-

tion of a partial integro-differential equation in option pricing problems. The precon-

ditioned conjugate gradient method with a tri-diagonal preconditioner is used to solve

this system. Theoretical analysis shows that under certain conditions the tri-diagonal

preconditioner leads to a superlinear convergence rate. Numerical results exemplify our

theoretical analysis.
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1. Introduction

It is well known that the option price for a European call option under Merton’s jump

diffusion model is determined by the expected value [1,10]

v (t, x)≡ e−r(T̄−t)EQ

h
�

ex+L T̄−t − K
�+
i

, (1.1)

where t is the time, x is the logarithmic price, Q is a risk-neutral measure, r is a risk-free

interest rate, T̄ is the maturity time, K is the strike price, and LT̄−t is a Lévy process. As

an alternative, the option value v (t, x) can also be obtained by solving a partial integro-

differential equation (PIDE) [8] as follows:


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σ2

2
vx x +

�

r − σ
2
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−λη
�

vx − (r +λ) v+λ
∫ ∞

−∞
v(t, x + y)φ(y)dy = 0,

v(T̄ , x) = H(ex), ∀ x ∈ R,

(1.2)
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where v (t, x) ∈ C1,2
�

(0, T̄]×R� ∩ C0
�

[0, T̄]×R�, φ(x) = e
−(x−µJ )

2
/2σ2

Jp
2πσJ

is the probabil-

ity density function of the Gaussian distribution, the parameters σ, r, λ, µJ , σJ , η =

eµJ+σ
2
J/2 − 1 are constants, and H (·) is the payoff function.

There are many works [1,3,10,11] dealing with numerical solutions of (1.2). Recently

Sachs and Strauss [10] eliminated the convection term in this PIDE and discretized the

transformed equation implicitly by using finite differences with uniform mesh. The result-

ing linear system is a dense Toeplitz system Tnx = b. They solved this system by using the

preconditioned conjugate gradient (PCG) method with circulant preconditioners.

In Merton’s model, jump sizes are normally distributed with mean µJ and standard

deviation σJ . With µJ = 0, discretizing the PIDE without the convection term yields a

symmetric Toeplitz system [10, 11], while for µJ 6= 0, the resulting system Tnx = b is a

nonsymmetric Toeplitz system. In [10, 11], only the case of µJ = 0 was considered. In

this paper, we discuss a more general case of µJ 6= 0. We consider applying the conjugate

gradient (CG) method to the following normalized preconditioned system
�

L−1
n Tn

�∗ �
L−1

n Tn

�

x =
�

L−1
n Tn

�∗
L−1

n b,

where the preconditioner Ln is a tri-diagonal matrix. We show that all the eigenvalues

of the normalized preconditioned matrix
�

L−1
n Tn

�∗ �
L−1

n Tn

�

are clustered around one.

Thus the convergence rate of the CG method is superlinear, when applied to solving the

normalized preconditioned system. We see from numerical results in Section 4 that the

tri-diagonal preconditioner works very well.

2. Discretization of PIDE

For Merton’s model, the corresponding PIDE is of the following form on introducing

w (τ,ξ)≡ v
�

T̄ −τ,ξ− ζτ� [10]:










wτ −
σ2

2
wξξ+ (r +λ)w−λ

∫ ∞

−∞
w(τ, z)φ(z − ξ)dz = 0,

w(0,ξ) = H(eξ), ∀ ξ ∈ R,

(2.1)

where w ∈ C1,2
�

(0, T̄]×R�∩C0
�

[0, T̄]×R�, ζ = r−σ2/2−λη is a constant, the param-

eters σ, r, λ, µJ , σJ , η and the probability density function of the Gaussian distribution

φ (x) are the same as in (1.2). Hence, the option value v (t, x) in Merton’s model can be

determined by solving (2.1).

To solve (2.1) numerically, one can use a domain truncation and a finite-difference

discretization in space, and the second order backward differentiation formula (BDF2) in

time. The domain of ξ is usually chosen to be Ω ≡ �ξ−,ξ+
�

. For a European call option,

the boundary conditions [1] are
(

w(τ,ξ)→ 0, ξ→−∞,

w(τ,ξ) s Keξ−ζτ− Ke−rτ, ξ→ +∞.


