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Abstract. We consider a nonsymmetric Toeplitz system which arises in the discretiza-
tion of a partial integro-differential equation in option pricing problems. The precon-
ditioned conjugate gradient method with a tri-diagonal preconditioner is used to solve
this system. Theoretical analysis shows that under certain conditions the tri-diagonal
preconditioner leads to a superlinear convergence rate. Numerical results exemplify our
theoretical analysis.
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1. Introduction

It is well known that the option price for a European call option under Merton’s jump
diffusion model is determined by the expected value [1,10]

v(t,x)= e_r(T_t)EQ [(ex“f*f - K)+] , (1.1

where t is the time, x is the logarithmic price, Q is a risk-neutral measure, r is a risk-free
interest rate, T is the maturity time, K is the strike price, and L;_, is a Lévy process. As
an alternative, the option value v (t,x) can also be obtained by solving a partial integro-
differential equation (PIDE) [8] as follows:

2 2 i
v, + %vxx + (r - % —An) Vy —(r+A)v+)Lf v(t,x+y)¢p(y)dy =0,
—00 (1.2)

v(T,x)=H(e¥), Vx€R,
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where v (t,x) € C**((0,T]xR)NC°([0,T] xR), ¢(x) = e
ity density function of the Gaussian distribution, the parameters o, r, A, u;, o5, N =
e TO3/2 _ 1 are constants, and H (+) is the payoff function.

There are many works [1,3,10,11] dealing with numerical solutions of (1.2). Recently
Sachs and Strauss [10] eliminated the convection term in this PIDE and discretized the
transformed equation implicitly by using finite differences with uniform mesh. The result-
ing linear system is a dense Toeplitz system T,x = b. They solved this system by using the
preconditioned conjugate gradient (PCG) method with circulant preconditioners.

In Merton’s model, jump sizes are normally distributed with mean u; and standard
deviation o;. With u; = 0, discretizing the PIDE without the convection term yields a
symmetric Toeplitz system [10,11], while for u; # 0, the resulting system T,x = b is a
nonsymmetric Toeplitz system. In [10,11], only the case of u; = 0 was considered. In
this paper, we discuss a more general case of u; 7 0. We consider applying the conjugate
gradient (CG) method to the following normalized preconditioned system

_ ko _ *

(£;'1,) (L,T,)x=(L,'T,) L,'b,
where the preconditioner L, is a tri-diagonal matrix. We show that all the eigenvalues
of the normalized preconditioned matrix (L; ! Tn)* (L; it n) are clustered around one.
Thus the convergence rate of the CG method is superlinear, when applied to solving the

normalized preconditioned system. We see from numerical results in Section 4 that the
tri-diagonal preconditioner works very well.

is the probabil-

2. Discretization of PIDE

For Merton’s model, the corresponding PIDE is of the following form on introducing

w(t,&)=v(T—r7,§—7) [10]:

2 o0
WT—%W5€+(r+7L)W—XJ w(t,2)p(z — &)dz =0,
—00 (2.1)

w(0,£) =H(e®), VEER,

where w € C12 ((0,T] x R)nC° ([0,T] x R), { =r—0?/2—An is a constant, the param-
eters o, r, A, Uy, 0;, n and the probability density function of the Gaussian distribution
¢ (x) are the same as in (1.2). Hence, the option value v (t,x) in Merton’s model can be
determined by solving (2.1).

To solve (2.1) numerically, one can use a domain truncation and a finite-difference
discretization in space, and the second order backward differentiation formula (BDF2) in
time. The domain of & is usually chosen to be Q = (§_,&, ). For a European call option,
the boundary conditions [1] are

w(t,8)—0, & — —o0,
w(T,E) ~Ket 7 —Ke 7, & — +o0.



