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Abstract. The solvability of a partial eigenvalue assignment problem for undamped gy-

roscopic control systems is proved and its explicit solutions are found. In addition, the

problem of replacing certain eigenvalues by required ones while keeping the remaining

eigenpairs unchanged, is solved by a multi-step method. The method is easily imple-

mentable and does not involve receptance matrices and Sylvester equation solutions.

Numerical examples show the efficiency of the method.
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1. Introduction

A gyroscope is a rotating body with one symmetry axis such that the rotation about the

symmetry axis is comparatively faster than the rotation about any other axis. In modern

usage, a gyroscope is a system consisting of a symmetric rotor, which spins rapidly about

the symmetry axis and free to move about one or two perpendicular axes. A considerable

number of spinning bodies can be regarded as gyroscopes — e.g. helicopter rotor blades

or spin stabilised satellites with elastic appendages such as solar panels or antennas. It is

therefore no surprise that the gyroscopic systems attracted substantial attention [9]. In par-

ticular, the vibrating phenomenon of the undamped gyroscopic systems, such as the rotors

of generators, solar panels on the satellite and so on may be modeled by the following

second-order ordinary differential system

Mz̈(t) + Gż(t) + Kz(t) = 0, (1.1)

where z(t) ∈ Rn and M , G, K ∈ Rn×n are, respectively, mass, gyroscopic and stiffness ma-

trices [12]. Note that the matrix M is assumed to be symmetric positive definite, G skew-

symmetric, K symmetric nonsingular and the time derivatives of z are, respectively, the
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vectors of displacement, velocity and acceleration. The associated open-loop pencil is given

by P(λ) = λ2M +λG + K .

To overcome undesirable effects of vibrations caused by certain eigenvalues of the sys-

tem, one can use a suitable control force to reassign those eigenvalues without changing the

others. In control theory, this problem is known as the partial pole placement problem [5].

We consider the control force of the form

f = Bu(t),

where B ∈ Rn×m is a full column rank control matrix and u(t) ∈ Rm is a control vector.

In order to assign the eigenvalues, an active control based on the velocity and displace-

ment state feedback can be employed. To improve the performance of second-order lin-

ear systems, Carvalho [3] used estimators, sensors and actuators feedback, and for partial

eigenstructure assignment of undamped vibration systems, Zhang [22] adopted accelera-

tion and displacement feedback. The later approach is even more important and attractive

because of frequent appearance of the accelerometers in practice and since acceleration

and velocity are easier to measure [17]. Thus we consider the control vector u(t) of the

form

u(t) = F⊤
1

z̈(t) + F⊤
2

ż(t) + F⊤
3

z(t),

where F1, F2, F3 ∈ Rn×m are acceleration, velocity and displacement state feedback matri-

ces, respectively. If F1 = 0, u(t) is the common control vector using velocity and displace-

ment state feedback, then the closed-loop system corresponding to (1.1) is

�

M − BF⊤
1

�

z̈(t) +
�

G − BF⊤
2

�

ż(t) +
�

K − BF⊤
3

�

z(t) = 0. (1.2)

Mathematically, the partial eigenvalue assignment problem for undamped gyroscopic con-

trol systems is to find matrices F1, F2, F3 ∈ Rn×m such that a few eigenvalues of the closed-

loop pencil

Pc (λ) = λ
2
�

M − BF⊤
1

�

+λ
�

G − BF⊤
2

�

+
�

K − BF⊤
3

�

are altered as required and the resting eigenpairs remain unchanged — i.e. possessing the

no spill-over property [20–24]. This leads to the partial eigenvalue assignment problem of

undamped gyroscopic control systems (GPEAP).

GPEAP Problem. Let M , G ∈ Rn×n and K ∈ Rn×n be, respectively, symmetric positive

definite, skew-symmetric and symmetric nonsingular matrices and let B ∈ Rn×m be a full

column rank control matrix. For a self-conjugate subset {λk}
p

k=1
, p < 2n of open-loop

eigenvalues {λk}
2n
k=1

, the corresponding set of eigenvectors {xk}
p

k=1
and a self-conjugate set

{µk}
p

k=1
, the GPEAP Problem consists in finding state feedback matrices F1, F2, F3 ∈ Rn×m

such that the closed-loop pencil

Pc (λ) = λ
2
�

M − BF⊤
1

�

+λ
�

G − BF⊤
2

�

+
�

K − BF⊤
3

�

has the eigenvalues {µk}
p

k=1
and eigenpairs {λk, xk}

2n
k=p+1

.


