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Abstract. In this work, we consider a boundary value problem involving Caputo deriva-

tives defined in the plane. We develop a fast locally refined finite volume method for

variable-coefficient conservative space-fractional diffusion equations in the plane to re-

solve boundary layers of the solutions. Numerical results are presented to show the

utility of the method.
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1. Introduction

Fractional partial differential equations (FPDEs), extensively investigated in recent de-

cades, provide powerful and flexible means for modeling anomalously diffusive transport

and long-range spatial interaction [26,28,29,42]. Subsequently, the set of numerical meth-

ods developed for their solution includes finite difference method (FDM), finite element

method (FEM), finite volume method (FVM), and mixed FEM [2,4,6,7,13,18,20–23,27,

32,35,45,46].

In their pioneer works, Ervin et al. [9, 11, 12] proved the well-posedness of the Ga-

lerkin weak formulation for space-fractional PDEs with a constant diffusivity. In addition,

they established optimal error estimates of the FEM in the energy- and L2-norms under

the assumptions that the exact solutions to FPDE and adjoint PFDE are smooth enough.

On the other hand, as is shown in [19, 39, 41] the solution to the homogeneous Dirich-

let boundary-value problem for one-dimensional fractional diffusion equation (FDE) with

smooth diffusivity and right-hand side may exhibit boundary layer and have poor regularity.

Consequently, there is no known verifiable condition to provide the required smoothness
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of the solution and ensure an optimal-order convergence of the Galerkin FEM as required

in [9,11,12].

Since then, different numerical methods have been developed for solving FPDEs with

boundary layers. In particular, in order to handle boundary layers in solutions of homoge-

neous Dirichlet boundary-value problem for one-dimensional constant-coefficient fractional

diffusion equation (FDE), generalised Jacobi polynomials (poly-fractonomials) have been

introduced [3, 10, 24, 25, 43, 44]. These polynomials are the eigenfunctions of a singular

fractional Sturm-Liouville problem and the resulting spectral methods have diagonal stiff-

ness matrices, which are easily invertible. Most important, an optimal-order error estimate

can be established if the right-hand side is smooth in a weighted L2-norm. The results are

also substantiated by the corresponding numerical experiments.

In addition, for the inhomogeneous Dirichlet boundary value problem for one-sided

variable-coefficient conservative FDE, an indirect Galerkin FEM and spectral Galerkin meth-

ods are developed [40, 41]. These works exploit an idea from [38] and express the solu-

tions of FDEs as the fractional derivative of the solutions of a second-order diffusion equa-

tion. Algorithmically, the second-order diffusion equation is solved by an FEM or a spectral

Galerkin method such that the smoothness of diffusivity and the right-hand side ensures the

required smoothness of the solution and also the high-order convergence of the numerical

methods used. Then a fractional differentiation of the corresponding Galerkin FEM or spec-

tral Galerkin solution is performed to obtain an approximation to the FDE, which would

retain the high-order convergence of the postprocessed solution in the L2-norm. Numerical

experiments show the strong potential of these methods.

A rather natural approach to boundary layers in solutions of FPDEs is to develop numer-

ical approximations on locally refined meshes. However, FPDEs contains complex integral

operators with singular kernels, so that the corresponding FDM, FEM, and FVM gener-

ate full or dense stiffness matrices and if N denotes the number of spatial freedoms, the

traditionally used direct solvers require O (N2) memory and O (N3) computational com-

plexity [8, 31, 34, 36]. Such computational complexity and memory requirements render

realistic multidimensional FPDE modeling and simulations computationally intractable.

It was discovered in [37] that the stiffness matrix for the Meerschaert-Tadjeran FDM

for a one-dimensional space-fractional PDE has a Toeplitz-like structure. Consequently, for

solving FPDEs fast Krylov subspace iterative methods with preconditioners using Toeplitz-

matrix structures have been developed. Although such methods have O (N ) memory re-

quirements and an almost linear computational complexity [8, 31, 33, 34], they deal with

discretisation on uniform spatial meshes. For gridded meshes, the corresponding FVM can

be expressed as the product of Toeplitz and diagonal matrices, with the latter responsible

for the impact of different mesh sizes [16]. It was also shown that for locally refined com-

posite meshes, the stiffness matrix loses its Toeplitz structure due to the nonlocal nature of

fractional differential operators [17]. However, the stiffness matrix can be approximated

by a block diagonal Toeplitz-like matrix plus a low-rank matrix. Consequently, a fast Krylov

subspace iterative method and a circulant matrix based preconditioner were developed.

Numerical experiments show that for solutions with boundary layers, fast FVMs perform

much better than those using uniform meshes.


