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Abstract. A spatial compact difference scheme for a class of fourth-order temporal mul-

ti-term fractional wave equations is developed. The original problem is reduced to

a lower order system and the corresponding time fractional derivatives are approxi-

mated by the L1-formula. The unconditional stability and convergence of the difference

scheme are proved by the energy method. Numerical experiments support theoretical

results.
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1. Introduction

Fractional calculus finds applications in various fields of science and technology, in-

cluding physics, signal and image processing, control, mechanics, dynamic systems, bi-

ology, environmental science, materials and economics [26]. However, the non-locality

and history dependence cause serious difficulties in finding solutions of fractional differ-

ential equations (FDEs). Therefore, considerable efforts have been spent on developing

approximation methods for their solution. Nevertheless, the existing works mainly focus

on equations with a single time fractional derivative term and some of the works on finite

difference methods are reviewed here.

Murillo and Yuste [20] considered an explicit difference method for fractional diffusion-

wave equations in the Caputo form, discretising time-fractional derivatives by the L2-

formula. The method has first-order accuracy in time and fractional Von-Neumann ap-

proach was used in the stability analysis. Sun and Wu [29] studied a finite difference
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method, where time-fractional derivatives in the diffusion-wave equations are approxi-

mated by the L1-formula. Zhang et al. [36] proposed a compact alternating direction im-

plicit (ADI) scheme for two-dimensional fractional wave equations and proved its uncondi-

tional stability in the H1-norm. Using weighted and shifted Grünwald difference operator,

Wang and Vong [31] developed numerical schemes with temporal second-order and spatial

fourth-order accuracy for modified anomalous fractional diffusion-wave equations. Similar

approach is used in the study of an ADI scheme for two-dimensional problems [32]. New

difference schemes for fractional diffusion-wave equations with reaction term presented

in [5] are based on the second-order Grünwald-Letnikov discretisation of the time-fractional

derivatives. Huang et al. [13] considered the equivalence of time-fractional diffusion-wave

equations with partial integro-differential equations in the construction of finite difference

schemes for time-fractional diffusion-wave equation and proved their stability and conver-

gence by the energy method. Arshad et al. [2] also relied on integral equations when con-

sidering a fourth-order difference method for time-space fractional differential equations.

Zeng [34] utilised second-order fractional trapezoidal and generalised Newton-Gregory

formulas in solving time-fractional diffusion-wave equations. Liu et al. [18] proposed a dif-

ferent approximation for the time-fractional derivative on the time level t = tn instead of

the usual approximation on a half-one level in the L1-formula. Determining solutions of

time-fractional diffusion-wave equations on a two-dimensional unbounded spatial domain,

Brunner et al. [3] introduced artificial boundary conditions.

The modelling of various phenomena leads to fractional diffusion-wave equations with

the fourth-order spatial derivative. Agrawal [1] found a general solution of such equa-

tions on bounded domains. On the other hand, Guo et al. [8] studied a local discontinuous

Galerkin method. Li and Wong [16] used quintic splines in spatial derivative approxima-

tion to develop a numerical method of order higher than four. They also discretised the

time-fractional derivative by weighted and shifted Grünwald-Letnikov formulas [15]. Hu

and Zhang [10–12] considered various finite difference schemes for fourth-order fractional

diffusion-wave equations. Zhang and Pu [35] proposed a compact difference scheme for

fourth-order fractional sub-diffusion systems and Vong and Wang [30] considered a com-

pact finite difference scheme for same type of systems with the first kind of Dirichlet bound-

ary conditions. Ji et al. [14] studied another compact difference scheme for a similar prob-

lem and Yao and Wang [33] investigated a compact difference scheme to problems with

Neumann boundary conditions.

All the above mentioned works deal with fourth-order fractional diffusion-wave equa-

tions containing a single time-fractional derivative term. It is worth noting that multi-term

fractional derivatives are used in visco-elastic damping [9], frequency-dependent loss and

dispersion [19]. As far as numerical methods are concerned, Liu et al. [19] reduced a multi-

term fractional differential equation to a system with several single-term equations, employ-

ing then a fractional predictor and corrector method. Dehghan et al. [4] applied a compact

finite difference approximation in time and Galerkin spectral approximation in space to

a multi-term fractional wave equation and Zhou et al. [37] studied a weak Galerkin finite

element method for multi-term time-fractional diffusion equation. Using variable separa-

tion and the L1-formula, Shen et al. [23] determined analytical and numerical solutions of


