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Abstract. The propagation estimate for the usual free Schrödinger operator established

by Enss in 1983, was successfully used by Enss and Weder in inverse scattering in 1995.

This approach has been called the Enss-Weder time-dependent method. We derive the

same type of estimate but for fractional powers of the negative Laplacian and apply it

in inverse scattering. It is found that the high-velocity limit of the scattering operator

uniquely determines the short-range interactions.
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1. Introduction

Let Dx denote the differential operator −i∇x = −i(∂x1
, . . . ,∂xn

). The fractional power

of the negative Laplacian acting on the space L2(Rn) is the operator

H0,ρ =ωρ(Dx),
1

2
¶ ρ ¶ 1,

defined by the Fourier multiplier with the symbol

ωρ(ξ) =
|ξ|2ρ
2ρ

.

More precisely, H0,ρ is the Fourier integral operator

H0,ρφ(x) = (F ∗ωρ(ξ)Fφ)(x) =
1

(2π)n

∫

R2n

ei(x−y)·ξωρ(ξ)φ(y)d ydξ,
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where φ belongs to the Sobolev space H2ρ(Rn). In particular, H0,1 is the free Schrödinger

operator

ω1(Dx) = −
∆x

2
= −1

2

n∑

j=1

∂ 2
x j

,

and H0,1/2 the massless relativistic Schrödinger operator ω1/2(Dx) =
p−∆x .

Let F(X ) refer to the usual characteristic function of the set X and let χ ∈ C∞(Rn) be

a function such that

χ(x) =

¨
1, |x |¾ 2,

0, |x |¶ 1.

In Section 2, we prove the following Enss-type propagation estimate for e−i tH0,ρ .

Theorem 1.1. Let f ∈ C∞0 (R
n) and supp f ⊂ {ξ ∈ Rn : |ξ| ¶ η} for a given η > 0. Choose

v ∈ Rn such that |v|> η and

16n(1−ρ)(|v| −η)2ρ−2η ¶ |v|2ρ−1,
1

2
¶ ρ < 1,

8η¶ |v|, ρ = 1.

(1.1)

For t ∈ R and N ∈ N, the inequality
χ
�

x − (∇ξωρ)(v)t
|v|2ρ−1|t|/4

�
e−i tH0,ρ f (Dx − v)F

�
|x |¶ |v|

2ρ−1|t|
16

�¶ CN

�
1+ |v|2ρ−1|t|�−N

(1.2)

holds, where ‖ · ‖ is the operator norm on L2(Rn) and constant CN > 0 depends on n, N and

the shape of f .

Let us recall that Enss [5] established the following estimate for the free Schrödinger

operator H0,1:

F
�
|x − v t| ¾ |v||t|

4

�
e−i tD2

x/2 f (Dx − v)F

�
|x |¶ |v||t|

16

�¶ CN (1+ |v||t|)−N , (1.3)

and this estimate is valid not only for spheres, but also for general measurable subsets of

R
n — cf. [5, Proposition 2.10]. Let us briefly discuss the substance of the estimate (1.3).

In classical mechanics, Dx represents the momentum or, equivalently, the velocity of the

particle of unit mass. In the left-hand side of (1.3), Dx is localised to the neighborhood of

v by a cut-off function f . Therefore, during the time evolution of the propagator e−i tD2
x
/2,

the position of the particle changes as

x ∼ Dx t ∼ v t.

Since the points on the sphere behave similarly, the center of the sphere moves toward v t

from the origin
�

x ∈ Rn

���� |x |¶
|v||t|
16

�
∼
�

x ∈ Rn

���� |x − v t| ¶ |v||t|
16

�
. (1.4)


