Numerical Soliton Solutions for a Discrete Sine-Gordon System

Houde Han\(^1*,\) Jiwei Zhang\(^2\) and Hermann Brunner\(^3,2\)

\(^1\) Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.
\(^2\) Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
\(^3\) Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, Canada A1C 5S7.

Received 10 December 2008; Accepted (in revised version) 23 March 2009
Available online 17 April 2009

Abstract. In this paper we use an analytical-numerical approach to find, in a systematic way, new 1-soliton solutions for a discrete sine-Gordon system in one spatial dimension. Since the spatial domain is unbounded, the numerical scheme employed to generate these soliton solutions is based on the artificial boundary method. A large selection of numerical examples provides much insight into the possible shapes of these new 1-solitons.

AMS subject classifications: 65M06, 65L10, 35Q53, 35Q51
Key words: Sine-Gordon equation, soliton solutions, numerical single solitons, artificial boundary method.

1 Introduction

The sine-Gordon equation,

\[
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + \sin(u) = 0
\]

(1.1)
is a semilinear hyperbolic equation in 1+1 dimensions. This PDE has its origin in the 19th century where it arose in the study of surfaces of constant negative curvature (cf. [1]). In the second half of the 20th century the sine-Gordon equation has attracted considerable attention, owing to its importance in the mathematical modeling of various physical phenomena, for example in nonlinear optics (propagation of pulses in resonant media); superconductivity (wave propagation in a Josephson transmission line); condensed matter...
physics (charge density waves in periodic pinning potentials); and in solid state physics (propagation of a dislocation in a crystal). Details and additional examples can be found in [2–5].

A very important property of the sine-Gordon equation (1.1) is the existence of soliton solutions. Many of these special solutions have been obtained in closed form, by using analytical methods such as Bäcklund transformations [6], the nonlinear separation of variables method [2]; see also [3] (Chapter 6). The known soliton solutions of (1.1) mainly can be classified as follows:

1. 1-soliton solutions: Two 1-soliton solutions are given by [7, 8]

\[u(x,t) = 4 \arctan \left(\frac{\pm x - \mu t - x_0}{\sqrt{1 - \mu^2}} \right), \quad \mu^2 < 1, \]

(1.2)

and

\[u(x,t) = -\pi + 4 \arctan \left(\frac{\pm x - \mu t - x_0}{\sqrt{\mu^2 - 1}} \right), \quad \mu^2 > 1. \]

(1.3)

Here, \(x_0, \mu \in \mathbb{R} \) and \(|\mu| \neq 1 \).

2. Breather solutions: Two breather solutions to (1.1) are given by [7, 8]

\[u(x,t) = 4 \arctan \left(\frac{\mu \sinh(kx + A)}{k \cosh(\mu t + B)} \right), \quad \mu^2 = k^2 + 1, \]

(1.4)

and

\[u(x,t) = 4 \arctan \left(\frac{\mu \sin(kx + A)}{k \cosh(\mu t + B)} \right), \quad \mu^2 = 1 - k^2 > 0. \]

(1.5)

Here, \(A \) and \(B \) are arbitrary (real) constants, and the real numbers \(\mu \) and \(k \) are related by the conditions in (1.4) and (1.5), respectively.

3. N-soliton solutions: An \(N \)-soliton solution for (1.1) is given by

\[u(x,t) = x + \arccos \left\{ 1 - 2 \left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial t^2} \right) \ln F(x,t) \right\}, \]

(1.6)

with

\[F(x,t) := \det[M_{ij}], \quad M_{ij} := \frac{2}{a_i + a_j} \cosh \left(\frac{z_i + z_j}{2} \right), \]

\[z_i := \pm \frac{x - \mu_i t + C_i}{\sqrt{1 - \mu_i^2}}, \quad a_i := \pm \sqrt{\frac{1 - \mu_i^2}{1 + \mu_i^2}}. \]