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Abstract. Novel dimensional splitting techniques are developed for ETD Schemes
which are second-order convergent and highly efficient. By using the ETD-Crank-
Nicolson scheme we show that the proposed techniques can reduce the computational
time for nonlinear reaction-diffusion systems by up to 70%. Numerical tests are per-
formed to empirically validate the superior performance of the splitting methods.
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1 Introduction

Reaction-diffusion systems are mathematical models with a wide variety of applications,
e.g. [10, 11, 13, 15, 16]. Reaction-diffusion systems can be reduced to systems of stiff or-
dinary differential equations by employing a method-of-lines discretization. Numer-
ous time-discretization methods for solving the resulting stiff ODE systems have been
reported in the literature. Among these are linearly implicit methods [8, 19, 20], semi-
implicit methods [17], and projection methods [18]. More recently Exponential Time
Differencing (ETD) schemes have been developed [1, 12, 15], which make use of a single
step representation of the evolutionary dynamics followed by an appropriate discretiza-
tion of the exponentials that arise. Variants of the proposed ETD scheme have been de-
veloped over the years which adopt different approximations to the integral resulting
from the nonlinear reaction term [2, 3, 5, 6, 12].

For multidimensional systems, the discretized diffusion matrices are often largely
sparse with wide bands, which tend to slow down direct solvers during evolution. In [7]
an ETD-LOD scheme was developed to reduce the storage requirements for solving
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higher dimensional problems and speed up the evolution through extrapolation of a
first order ETD scheme and a simple type of locally one-dimensional (LOD) splitting
to achieve second order accuracy. In the present article we are concerned with speed-up
through different types of locally one-dimensional-splitting and without using extrapo-
lation, instead, directly working with a second order ETD scheme. In the first approach
we break up the PDE into sub-problems and apply a Strang composition of the sub-
solution operators to recover the solution. The second method uses an integrating factor
substitution to achieve a natural splitting of the PDE along its spatial dimensions. We
apply the technique to split the second order ETD-CN [5] and examine its performance
in discretizing several two dimensional problems.

2 ETD-schemes

Consider the following semilinear parabolic initial-boundary value problem:

ut+Au=F(t,u) in Ω, t∈ (0,T],

u(·,0)=u0 in Ω, (2.1)

Lu(·,t)=0 on ∂Ω,

where Ω is a bounded domain in ℜd with Lipschitz continuous boundary, A represents
a uniformly elliptic operator and F is a sufficiently smooth, nonlinear reaction term. The
operator A is usually of the form,

A :=−
d

∑
j,k=1

∂

∂xj

(

aj,k(x)
∂

∂xk

)

+
d

∑
j=1

bj(x)
∂

∂xj
+b0(x),

where the coefficients aj,k and bj are sufficiently smooth functions on Ω, aj,k = ak,j, b0≥0,
and for some c0>0

d

∑
j,k=1

aj,k(·)ξ jξk ≥ c0|ξ|
2, on Ω, for all ξ∈R

d.

The boundary operator is Lu=u (Dirichlet) or ∂u
∂n (Neumann) boundary conditions. From

the Duhamel principle, the solution for (2.1) can be expressed in terms of the recurrence
relation

u(tn+1)= e−Aku(tn)+
∫ tn+1

tn

e−A(tn+1−s)F(s,u(s))ds,

which can be simplified further to

u(tn+1)= e−Aku(tn)+
∫ k

0
e−A(k−τ)F(tn+τ,u(tn+τ))dτ, (2.2)


