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Abstract. In this review article we discuss different techniques to solve numerically
the time-dependent Schrödinger equation on unbounded domains. We present in de-
tail the most recent approaches and describe briefly alternative ideas pointing out the
relations between these works. We conclude with several numerical examples from
different application areas to compare the presented techniques. We mainly focus on
the one-dimensional problem but also touch upon the situation in two space dimen-
sions and the cubic nonlinear case.
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1 Introduction

The equation under consideration is the 1D Schrödinger equation

i∂tu=−∂2
xu+V(x,t)u, x∈R, t>0,

lim
|x|→∞

u(x,t)=0,

u(x,0)=uI(x),

(1.1)

where V denotes a given real potential. We assume that the initial data is compactly
supported, i.e., supp(uI)⊂ [xl ,xr]. Furthermore, we assume that V is constant outside
an interval [xl ,xr], i.e., V(x) = Vl for x < xl, V(x) = Vr for x > xr (t-dependent exterior
potentials will be discussed in Remark 2.5).

Eq. (1.1) is one of the basic equations of quantum mechanics and it arises in many
areas of physical and technological interest, e.g. in quantum semiconductors [28], in elec-
tromagnetic wave propagation [87], and in seismic migration [33]. The Schrödinger equa-
tion is also the lowest order one-way approximation (paraxial wave equation) to the Helm-
holtz equation and is called Fresnel equation in optics [112], or standard parabolic equation
in underwater acoustics [129]. We will return to these applications in the numerical ex-
amples of Section 6.

The solution to (1.1) is defined on the unbounded domain Ω = {(x,t)∈R×R+}. If
one wants to solve such a whole space evolution problem numerically, one has to restrict
the computational (interior) domain Ωint ={(x,t)∈]xl ,xr[×R+} by introducing artificial
boundary conditions or absorbing layers [81, 105]. Note that the method of “exterior
complex scaling” [95] belongs also to this last mentioned class. Alternative methods are
infinite element methods (IEM) [45].

We remark that in some cases the original whole space problem can be transformed
into a differential equation on a finite domain. However, this coordinate transform technique
is restricted to special cases and yields quite complicated differential equations. This


