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Abstract. This paper presents a new and better suited formulation to implement the
limiting projection to high-order schemes that make use of high-order local reconstruc-
tions for hyperbolic conservation laws. The scheme, so-called MCV-WENO4 (multi-
moment Constrained finite Volume with WENO limiter of 4th order) method, is an
extension of the MCV method of Ii & Xiao (2009) by adding the 1st order derivative
(gradient or slope) at the cell center as an additional constraint for the cell-wise local
reconstruction. The gradient is computed from a limiting projection using the WENO
(weighted essentially non-oscillatory) reconstruction that is built from the nodal values
at 5 solution points within 3 neighboring cells. Different from other existing methods
where only the cell-average value is used in the WENO reconstruction, the present
method takes account of the solution structure within each mesh cell, and thus mini-
mizes the stencil for reconstruction. The resulting scheme has 4th-order accuracy and
is of significant advantage in algorithmic simplicity and computational efficiency. Nu-
merical results of one and two dimensional benchmark tests for scalar and Euler con-
servation laws are shown to verify the accuracy and oscillation-less property of the
scheme.

AMS subject classifications: 65M08, 65M70, 76L05, 76N15

Key words: Multi-moment finite volume method, WENO, flux reconstruction, compressible flow,
conservative method, oscillation-suppressing.

1 Introduction

High order numerical methods have got increasingly use in solving fluid dynamic prob-
lems for their superior performance in resolving the vortex-dominant flows in compar-
ison with low order methods. Different from the conventional finite volume method
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(FVM) and finite difference method (FDM), making use of locally (cell-wisely) increased
degrees of freedoms (DOFs) to construct high-order schemes is a trend for the past decades
in the field of computational fluid dynamics (CFD), which still remains an active research
direction. The major advantages of a scheme using high-order local reconstruction (HLR)
lie in the spectral-like convergence rate and the adaptivity to unstructured grids. Some
representative methods of this sort for CFD applications are the spectral element method
[19], the discontinuous Galerkin (DG) method [4–6,9], the constrained interpolation pro-
file (CIP) method [45, 46], the staggered-grid (SG) Chebyshev multidomain method [16],
the spectral volume (SV) method [34,35], the spectral difference (SD) method [30], multi-
moment (constrained) finite volume (MV or MCV) method [3, 13, 14, 43, 44].

Although apparent differences are seen among the aforementioned methods in the
details of reconstruction and solution procedures, all of them realize high-order accu-
racy via locally reconstructed polynomials and guarantee the numerical conservation
by introducing an FVM-like constraint condition on the continuity of numerical fluxes
across mesh cell boundaries, which are computed through exact or approximate Rie-
mann solvers. From this observation, a general framework for constructing high-order
spectral-convergent schemes, so-called Flux Reconstruction (FR) method, was proposed
in [12]. The FR formulation treats the point values as the computational variable at the so-
lution points located within each grid cell, which facilitates local reconstructions of high
order. An FR scheme computes the point-wise solution via the differential form of the
governing equations where the flux function must be reconstructed so as to satisfy the
continuity on the cell boundaries. As shown in [12], nearly all existing nodal-value based
high order schemes can be interpreted as the subset cases of the FR framework where the
correction functions involved in the flux reconstruction procedure makes the difference
among the schemes. The FR was extended to unstructured grids under the name of CPR
(correction procedure via reconstruction) [36].

We show in the multi-moment constrained flux reconstruction (MMC-FR) method
[38] that the flux function can be reconstructed more flexibly with a wider variety of
constraint conditions. We demonstrated that stable and more efficient schemes can be
devised by making use of not only the point values but also the derivatives of differ-
ent orders at different constraint points. The class of MCV schemes [14] can be devised
straightforwardly from various constraint conditions under the MMC-FR framework.

Despite the superiority of the schemes with HLR in resolving complex structures of
smoothness, numerical oscillations associated with discontinuities turns out to be an-
other problem. Using some special interpolation function, such as the rational function
in [39, 40, 42], proves to be effective in suppressing numerical oscillations. Being a more
general approach, nonlinear limiting projection can be used to prevent the spurious os-
cillations in the presence of discontinuities or large jumps. For example, total variation
bounded (TVB) limiters were used in the DG method [4–6] and other HLR methods men-
tioned before, and proved to be effective in computing even shock-dominant flows. Com-
pared to the TVB limiter, the weighted essentially non-oscillatory (WENO) limiter [15,18]
is more attractive because it is able to effectively suppress the numerical oscillation in


